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Abstract. E-learning resources increase vastly with the pervasion of the 
Internet. Thus, the retrieval of e-learning resources becomes more important. 
However, the typical lexical matching could not satisfy the users’ underlying 
intention. We adapted affinity propagation in MapReduce framework to make 
semantic retrieval applicable to large-scale data, and with this parallel affinity 
propagation we proposed an approach to retrieve e-learning materials 
efficiently, which could retrieve semantically relevant materials utilizing 
conceptual topics produced in advance.   

Keywords: E-learning Resources Retrieval; Parallel Affinity Propagation; 
MapReduce 

1   Introduction and Related Work 

With the pervasion of the Internet, e-learning is more and more popular, which 
provides a brand new way for people to learn without attending face-to-face class. 
With e-learning, the student and the teacher use online technology to interact, which 
profits from a combination of techniques including computer networks, multimedia, 
content portals, digital libraries, search engines, etc. The worldwide e-learning 
industry is estimated to be worth over 38 billion euros according to conservative 
estimates [1]. With the prevalence of e-learning, the amount of learning resources also 
grows exponentially, which makes it not feasible to access them only by clicking 
links. Thereby, an effective mechanism is needed to locate the resources, with which 
people could find the e-learning materials they want with facility. To accurately locate 
the e-learning materials a user is seeking for, a system has to guess the user’s 
underlying intention from the text typed in, rather than merely return the results from 
literally matching, particularly when the user is not familiar with the terminologies of 
the field which he/she is trying to learning. Thus, leveraging the data mining 
technology to locate the resources semantically related to the querying text becomes 
meaningful. Nowadays, the e-learning resources comprise texts, images, videos, 
audios and materials in other modalities, however, text materials are the best choice to 



2      Wenhua Wang, Hanwang Zhang, Fei Wu, and Yueting Zhuang 

 

be analyzed and understood, in that texts account for the biggest part and only the text 
resources reflect the information most directly. Besides, taking efficiency and the 
expensive mining cost into account, it’s reasonable to focus only on the text materials 
and to neglect materials in other modalities.  

In data mining technology, clustering is an effective method to discover clues 
when little is known about the data. Besides, e-learning materials are intrinsically 
appropriate to be clustered, in that fields of materials concerning likely overlap fields 
of others, and materials concerning similar fields probably use the same words, 
particularly the same terminologies. For example, two physics books will likely use 
words such as ‘energy’, ‘force’, ‘mass’, and ‘charge’ repeatedly, which consequently 
strengthens the correlation between the books . So we adopt the clustering method to 
discovery the correlations among the E-learning materials. 

Traditionally, measures of text similarity have been used for a long time in 
applications in natural language processing and related areas [5] .One of the earliest 
applications of text similarity is perhaps the vector model in information retrieval, 
where the document most relevant to an input query is determined by ranking 
documents in a collection in reversed order of their similarity to the given query [6]. In 
the vector space model, a document is represented by a vector indexed by the terms of 
the corpus, so two documents that use semantically related but distinct words will 
therefore show no similarity. Many methods were proposed to explicitly or implicitly 
make use of similarity between terms, such as [4] [5] [7], and some other WordNet [8] 
based methods. 

Those information retrieval technologies work well with toy data. However, 
because of memory limitation of stand-alone computer and the expensive 
computation cost of matrix operation such as singular value decomposition, situation 
becomes intractable when they are applied to large-scale data, taking unendurable 
long time or even being interrupted due to out of memory. To tackle the unavoidable 
problem, usually two categories of methods are used. The first kind is to use matrix 
factorization and to merge the results using mathematic method, such as [11], [12]. 
The other kind is to parallelize the learning procedure and to compute each part on 
distributed computers in parallel. In this paper, we take advantage of MapReduce 
framework [9], which helps to run specially designed program on distributed 
computers. After the clustering to the original large data set, we then construct 
semantic spaces on the resultant relatively small-scale data sets to carry out 
semantically retrieval on e-learning materials. 

In this paper, we proposed a method to manage the e-learning resources and to 
retrieve the semantically related materials according to users’ underlying intention. To 
tackle the problem induced by the large scale of data, we devise a parallel clustering 
method in MapReduce framework to preprocess the e-learning materials. 

2.   E-learning Resources Retrieval 

Typically, information is retrieved by literally matching terms in documents. 
However, this kind of methods can be inaccurate to match a user's query. Since a 
given concept can be expressed by in many different ways, the literal terms in the 
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query may not match those of a relevant document, particularly when the user is not 
familiar with the terminologies of the field he/she is learning about. In addition, most 
words have multiple meanings, so lexical matching may mistake an irrelevant 
document as relevant as long as the document contains the same term. A better 
approach would allow users to retrieve information on the basis of a conceptual topic 
or meaning of a document [2]. 

2.1   Conceptual Topic Clustering 

As we mentioned in the introduction section, e-learning materials are intrinsically 
appropriate and straightforward to be clustered into conceptual topics. It’s reasonable 
to think that e-learning materials belonging to different topics have little resemblance. 
For instance, if the query is “Algorithms and Data Structure”, obviously, the results 
belong in the topic of computer science and materials belonging in other topics such 
as physics needn’t to be searched. In addition, varying from literally matching, 
methods employing semantic information are time-consuming and use a lot of 
memory. Therefore, e-learning resources are required to be preprocessed and 
partitioned into topics before semantic retrieval. 

In this paper, we adopt a method called affinity propagation to cluster the e-
learning resources. Affinity propagation takes as input a collection of real-valued 
similarities between data points, and outputs the clustered data by identifying a 
representative example called exemplar for each data point. Instead of using the 
original affinity propagation directly, we adapted it in MapReduce framework to 
make it applicable to large-scale data. The adapted parallel affinity propagation is 
elaborated in section 3.2. 

2.2   Semantic Retrieval in Topic 

After e-learning resources are clustered, each cluster has an exemplar which can 
represent the topic of resources in this cluster. Hence, we construct a two-layer 
retrieval model using latent semantic indexing (LSI). 

LSI is used to overcome the problems of lexical matching by using statistically 
derived conceptual indices instead of individual words for retrieval [2]. In LSI, 
truncated singular value decomposition is used to estimate the structure in word usage 
across documents. To use LSI, a term by document matrix At×d is constructed first, 
where the value aij reflects frequency of term i in document j. The matrix At×d  is 
factored into the product of three matrices using the SVD. The SVD of At×d, denoted 
by SVD(At×d), is defined as 

T
t d× =A UΣV  (1) 

The SVD derives the latent semantic structure model from the orthogonal matrices 
U and V containing left and right singular vectors of At×d, respectively, and the 
diagonal matrix Σ. These matrices reflect a breakdown of the original relationships 
into linearly independent vectors or factor values. The use of k factors or k-largest 
singular triplets is equivalent to approximating the original term-document matrix. In 
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some sense, the SVD can be viewed as a technique for deriving a set of uncorrelated 
indexing variables or factors, whereby each term and document is represented by a 
vector in k-space using elements of the left or right singular vectors. LSI represents 
terms and documents in the same semantic space, and refer to reference [2], [3], [4] 
for details. Most of LSI processing time is spent in computing the truncated SVD of 
the large term by document matrices.  

The retrieval process is as follows. When a query is submitted, it is analyzed 
implicitly and the most relevant topics are returned, which is done by construct a 
semantic space using the exemplars, since the number of clusters is much smaller than 
that of e-learning materials, thus, the dimension of the exemplar semantic space is 
much lower. 

For each cluster, topic semantic space is built, and the semantic retrieval is 
processed with LSI within the several most relevant topics which are returned in the 
topic retrieval step. Thus, we don’t have to do the expensive singular value 
decomposition step with all the data at one time, and the cost of semantic retrieval is 
alleviated accordingly. 

3.   Parallel Affinity Propagation 

In this section, we propose a clustering method called parallel affinity propagation, 
implemented in MapReduce framework. We first introduce the MapReduce 
programming model, and then apply the programming model to parallelize the 
standard original affinity propagation. With the proposed parallel affinity propagation, 
it is feasible to cluster the vast amount of e-learning resources. 

3.1   MapReduce Framework 

MapReduce is a programming model and an associated implementation for 
processing and generating large data sets [9]. Users specify a map function that 
processes a key/value pair to generate a set of intermediate key/value pairs, and a 
reduce function that merges all intermediate values associated with the same 
intermediate key. Programs written in this functional style are automatically 
parallelized and executed on a large cluster of commodity machines. The run-time 
system takes care of the details of partitioning the input data, scheduling the 
program's execution across a set of machines, handling machine failures, and 
managing the required inter-machine communication [9]. 

The computation takes a set of input key/value pairs, and produces a set of output 
key/value pairs. The user of the MapReduce library expresses the computation as two 
functions: Map and Reduce. Map, written by the user, takes an input pair and 
produces a set of intermediate key/value pairs. The MapReduce library groups 
together all intermediate values associated with the same intermediate key I and 
passes them to the Reduce function. The Reduce function, also written by the user, 
accepts an intermediate key I and a list of values for that key, which makes sure that 
values with same key are processed at one time on the same computer. Reduce 
function merges together these values to form a possibly smaller set of values. The 
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intermediate values are supplied to the user's reduce function via an iterator. This 
allows us to handle lists of values that are too large to fit in memory [9]. 

3.2   Adaptation of Affinity Propagation 

Affinity propagation is a clustering method, which starts by considering all the data 
points as potential exemplars, and then recursively transmits real-valued messages 
along edges of the network whose nodes are data points. At any point in time, the 
magnitude of each message reflects the current affinity that one data point has for 
choosing another data point as its exemplar [10]. After certain number of iterations, a 
good set of exemplars and corresponding clusters emerges. The input of affinity 
propagation is a collection of real-valued similarities between data points, where the 
similarity s(i, k) indicates how well data point k is suited to be the exemplar for point i. 
In affinity propagation, the number of clusters is not required to be specified, which 
could be influenced implicitly by adjusting values of s(i, i) called “preference”. The 
data point with larger value of s(i, i) is more likely to be chosen as an exemplar. There 
are two kinds of messages are exchanged between data points, namely 
“responsibility” and “availability”. The “responsibility” r(i, k), sent from point i to 
point k, reflects how well-suited data point k  is to serve as the exemplar for data point 
i. The “availability” a(i, k), sent from candidate exemplar point k to point i, reflects 
the accumulated evidence for how appropriate it would be for point i to choose point k 
as its exemplar, taking into account the support from other points that point k  should 
be an exemplar [10]. The updating is according to the following rules:  

{ }( )' '

' . . '
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r i k r i k s i k a i k s i kλ λ

≠
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'

' . . '
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= − × + × ∑  (4) 

In the three equations above, λ is the damping factor used to avoid numerical 
oscillations. To begin with, the availabilities are initialized to zero: a(i, k)=0. The 
detailed explanations to these equations could be found in reference [10]. In this paper, 
we only focus on how to parallelize the updating process now that the computation of 
“responsibility” and “availability” depend on each other recursively and tightly. If we 
represent the “responsibility” and “availability” in the form of matrix, we can find by 
analyzing three equations above that the value of r(i, k) depends on the entire row of 
similarity matrix and “availability” matrix, namely s(i, :) and a(i, :). Similarly, the 
value of a(i, k) depends on the entire column of “responsibility” matrix, namely r(:, k). 
Therefore, it’s not possible to split data points into several partitions and compute 
their “responsibility” and “availability” values respectively, which corresponds well 
to the fact that the computation of “availability” of each data point need to collect the 
support from all other points. The same situation is also applicable to “responsibility”. 



6      Wenhua Wang, Hanwang Zhang, Fei Wu, and Yueting Zhuang 

 

There are some constraints to be considered when parallelizing affinity propagation: 
1. The entire row of “responsibility” should be calculated on the same computer, in 

respect that each value of r(i, k) takes the same entire i-th row of similarity and 
“availability” as input. 

2. Similarly, the entire column of “responsibility” should be calculated on the same 
computer, since each value of a(i, k) depends on the entire k-th column of 
“responsibility”. 

3. Considering every value should to be damped, it is necessary to make sure the 
corresponding value calculated in the last iteration should be kept for the current 
iteration. 
Since it’s not possible to parallelize the global computation by splitting input data 

into pieces and calculating each piece respectively, we intend to parallelize 
computation within each iteration. 

 
Fig.1. Flow Chart of Parallel Affinity Propagation 

Figure 1 shows the process of parallel affinity propagation. Each box represents a 
step respectively corresponds to step 1 to step 4. Each step mainly comprises a 
mapper class and a reducer class in Hadoop implementation. If mapper class or 
reducer class takes little effect in some step, it is ignored when we elaborate. The 
whole process is comprised of four steps; step 2 and step 3 are iterated for certain 
times or until convergence. Here are the details of each step as below. 

Step 1: Initialize the input similarities using class called InitMapper and then 
output the similarity, responsibility and availability in the form of “i: Flag k value”. 
Here, colon is used to separate the key and value in MapReduce framework. Flag is 
used to tell the type of the value, which could be one of the values in ‘s’, ‘r’, and ‘a’, 
representing similarity, responsibility and availability correspondingly. In step 1, all 
the values of responsibility and availability are initialized to zero. 
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Step 2: Compute the “responsibilities” according to equation 2, and the output of 
responsibility is a little tricky, by which we mean, the output of “responsibility” and 
“availability” of step 2 is in the form of “k: Flag i value”. For instance, r(i, k)=0.5 is 
represented as “k: r i 0.5”, and similarly a(i, k)=0.1 is represented as “k: a i 0.1”. The 
reason is shown in step 3. To calculate r(i, k), all the values of a(i, k’) and s(i, k’) are 
needed as input. Though computation is distributed on different computers, all the 
values taking i as key are passed into the reduce function in class SA2RReducer as a 
list. In reduce function, it is easy to tell the type of the value according to the Flag, 
and to figure out the correct value of r(i, k) after looking over all the values with i as 
key. 

Step 3: Compute the “availabilities” according to equation 3 and equation 4, then 
output “responsibilities” and “availabilities” in normal order as the input of step 2 of 
the next iteration. Similarly to step 2, the calculation of a(i, k) needs all the values of 
r(i’, k) as input. Since after step 2, all the key/value pairs are indexed by the column, 
all the values in the k-th column are organized as a list; it’s possible to calculate 

'

' . . ' { , }

max{0, ( , )}
i s t i i k

r i k
∉
∑ , which is part of equation 3 and equation 4. 

Step 4: Figure out the exemplars for all the data points using the result of iteration 
of step 2 and step 3. First, reduce function in class CleanReducer finds the candidate 
exemplars whose summation of “availability” and “responsibility” is larger than zero. 
Second, for each data point k, it chooses from candidate exemplars with largest 
similarity to k  as the real exemplar for k. It is worth noting that the task number of 
step 4 has to be set to 1, by which we mean this step can’t be distributed. Because 
each choice of exemplar for data point can only be made after all the candidate 
exemplars are looked up, which makes the step can only be processed on the unique 
computer. 

4 Experiments 

To evaluate the effectiveness of our approaches, we experimented with 1425 e-
learning documents. The 1425 documents are divided into 150 conceptual topics, and 
generally each conceptual topic contains less than 20 documents. In our experiments, 
we evaluate the precision of our method, which is defined as .: 

the number of correctly returned objectsprecision
the number of total objects returned

=  (5) 

Besides, to evaluate how effective our approaches are to retrieve e-learning 
materials a user want to find, we define coverage as: 

the number of correctly returned objectscoverage
the number of relevant objects in database

=  (6) 
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4.1 Conceptual Topic Clustering 

In this section, we mainly evaluate the performance of the conceptual topic clustering 
of e-learning resources. In our experiment, each document is assigned to a conceptual 
topic in advance. After the unsupervised clustering by affinity propagation, every 
document in each cluster is looked up in the digital library and its real conceptual 
topic is found. Then, we assign the most common topic to the cluster, calculate the 
ratio of the number of documents in the cluster that belonging in the most common 
topic over the total number of documents in the cluster and regard it as a clustering 
accuracy percentage. 
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Fig. 2. The accuracy of clustering with different number of clusters. 

 

Figure 2 shows the accuracy of clustering when the number of clusters is changed. 
From figure 2, we can see that the number of clusters produced by affinity 
propagation ranges from 151 to 191, and the accuracy percentage is around 0.87. The 
result of clustering is crucial to the final retrieval results, since by clustering, 
irrelevant documents are excluded and will not be searched. According to this 
experiment, we can see that less than 20 percent of irrelevant documents are clustered 
into the not so relevant topic, which could satisfy the need of excluding most 
irrelevant documents. 

4.2 Query Relevant E-learning Resources 

In this section, we do some experiments to test the performance of the proposed 
method. Before the retrieval with LSI, e-learning documents have been clustered into 
165 conceptual topics. When a query is arrived, several target clusters are chosen to 
search from, which are determined according to similarities of query and exemplars. 
Obviously, if the query is a document in database, it will choose right the cluster it is 
clustered to as the first target cluster. The standard LSI is used to search the target 
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clusters then. In our experiment, for each query, top 24 results are returned. If the total 
number of documents in target clusters is less than 24, then all the documents in target 
clusters are returned. Usually, we return top several documents as results in each 
target cluster averagely. 
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Fig. 3. The accuracy of retrieval with different number of target clusters. 

Figure 3 shows the accuracy and coverage of proposed method. Figure 3 reflects 
the influence caused by number of target clusters. When only one cluster serves as the 
target cluster, the precision is best, since most of documents in the only cluster is 
relevant to the query; the coverage is not good enough though, because part of this 
conceptual topic is clustered into other clusters; besides, in some cases, the query 
semantically relates to several topics, which makes the converage low with only one 
target cluster. As the number of target clusters increase, the coverage grows up at first 
due to more target clusters are took into account, and the precision falls because more 
less relevant documents in new introduced clusters are returned as results. It is worth 
noting that when the number of target clusters grows to six, the coverage also falls 
relative to the situation when number of target clusters is four. This is caused when 
the total number of documents in all target clusters exceeds 24, then less results in the 
best several clusters could be returned. According to our experiments, we can see that 
over 50% of relevant documents are in one cluster, and we could choose two or three 
clusters as target clusters, taking coverage into consideration. 

6. Conclusion 

In this paper, we adapted affinity propagation in MapReduce framework which is 
implemented by project Hadoop to make the clustering method applicable to large-
scale data, since the proposed parallel affinity propagation could run in distributed 
way. We also introduced a method to retrieve e-learning resources according to 
conceptual topics efficiently, utilizing the proposed parallel affinity propagation. 
Experiment shows this method retrieves relevant resources relatively accurate and 
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takes little time, which benefits from the off-line clustering limiting the target clusters 
to search from. 
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