
 

 

A Hybrid Learning Course on Software Development  
— Requirements Validation of Tool Support1 

Y.T. Yu2*, M.Y. Choy*, E.Y.K. Chan#, and Y.T. Lo# 

 
Department of Computer Science, City University of Hong Kong 

*{csytyu, csmchoy}@cityu.edu.hk,  #{chanyk, ytlo}@cs.cityu.edu.hk 

Abstract. Learning of software development demands not only adequate 
supervision by the instructor, but also intensive interactions among students.  
In traditional classroom learning, the number of contact hours between the 
instructor and students is very limited.  This severely restricts the amount of 
guidance and learning that students may receive in a course.  In particular, the 
best practices in software development, such as design modelling, peer review, 
quality assurance and project management, all require ample practice that is 
hardly feasible in the traditional classroom learning setting.  Supported by 
e-learning systems and tools, a large part of the interactions between instructors 
and students can now be done online.  We propose a hybrid learning design of 
software development courses to take advantage of both the rich context 
available in classroom learning and the benefits of electronic communications.  
This paper presents the rationale for hybrid learning in such courses, and 
describes a pilot hybrid learning course on software development for 
preliminary evaluation and requirements validation of tool support. 

Keywords: Course design, hybrid learning, requirements validation, software 
development, Web-based learning tool. 

1   Introduction 

Software development (SD) courses aim at educating students the theories, techniques, 
and best practices of the development of software systems.  As such, project work is 
an integral component of SD courses [15].  Development of non-trivial software 
projects has to be done in teams.  In doing the project work, members of a team have 
to collaborate closely, as effective communication is one of the critical success factors 
in software projects.  Moreover, the instructor has to offer adequate supervision to 
project teams and monitor the progress of students.  Thus, intensive communication 
among students and the instructor plays an important part in software project work. 

                                                           
1 This work is supported in part by a grant (project number: CityU123206) from the Research 

Grants Council of the Hong Kong Special Administrative Region, China. 
2 Corresponding author. 



 

 

The importance of communication is particularly prominent from the perspective 
of learning in SD courses.  First, students have to learn from the instructor how to 
plan a project and carry out the SD activities, which typically include requirements 
specification, design, implementation, testing and other quality assurance tasks.  In 
this regard, ample guidance from the instructor is essential.  Second, students have to 
learn from other members of the team through their collaboration in the project.  
During the project work, students invariably have to seek for supplementary learning 
materials which have to be shared among themselves.  Third, modern SD best 
practices emphasise peer reviews and inspections, in which team members review the 
work of one another so as to remove any defects in the project deliverable as early as 
possible [2, 16].  Finally, members of a team can learn from the good work of other 
teams, provided there are opportunities for experience sharing and across-team 
reviews. 

However, the number of face-to-face (F2F) contact hours between the instructor 
and students is usually very limited.  This severely restricts the amount of guidance 
and learning that students may receive in a course.  In particular, the best practices in 
software development, such as design modelling, quality assurance and project 
management, all require ample practice that is hardly feasible in a traditional 
classroom learning setting. 

Web-based communications are more convenient, efficient, and flexible than F2F 
interactions as the former can be asynchronous and independent of the physical 
locations of the participants.  Moreover, people can retrieve instant information from 
the Web and acquire new knowledge through it.  Thus, the Web has opened up 
tremendous opportunities for improving the way that learning takes place. 

Supported by e-learning systems, a large part of the interactions between 
instructors and students can now be done online.  Hybrid learning [8, 12], also called 
blended learning [1, 6, 15], refers to the mode of education that requires the instructor 
and students to meet and interact not only in a traditional F2F classroom environment, 
but also online, typically through Web-based communication channels. 

We have earlier proposed an outline of a hybrid learning design of SD courses [13], 
which takes advantage of both the rich context available in classroom learning and the 
benefits of communication by the electronic means.  To facilitate the implementation 
of hybrid learning, we have built a Web-based course tool, known as TREASURE, to 
supplement an existing e-learning platform to provide the specific needs for learning 
of SD [14, 15].  For the purpose of preliminary evaluation and requirements 
validation of the tool support, we have recently completed a pilot run of a SD course 
based on the hybrid learning design and the use of TREASURE.  This paper presents 
the rationale for hybrid learning in SD courses, and describes the learning activities in 
the pilot run.   

The rest of this paper is organized as follows.  Section 2 discusses the specific 
problems in conventional classroom learning in SD courses, and explains why it 
should be supplemented but not replaced by e-learning.  Section 3 outlines the 
requirements, functionalities and design of TREASURE, which was custom-built for 
supporting hybrid learning in SD courses.  Section 4 describes a pilot hybrid 
learning course on SD for preliminary evaluation and requirements validation of tool 
support.  Section 5 briefly describes related work, and Section 6 concludes this paper 
with suggestions of further work. 



 

 

2   Learning in Software Development Courses 

2.1   Conventional Classroom Learning 

The quality of software has become increasingly prominent since huge, complicated, 
and safety-critical software systems are now ubiquitous, affecting us in a myriad of 
ways in our daily life.  To achieve high quality software, the SD process must be 
properly managed and well-disciplined.  One common way of managing the SD 
process is to organise it into phases.  A software process model is specified by the 
definition and sequencing of activities in these phases, together with the interactions 
among them.  The most renowned software process model is the classical waterfall 
model, which is typically composed of a requirements definition phase, an analysis 
and design phase, a coding phase, a testing phase, and an operation phase.  The 
waterfall model, which offers a structured approach to SD, provides distinct 
milestones and well-defined documentation in each phase of the process.  It is 
perhaps for this reason that the waterfall model is commonly adopted in many SD 
courses [15], and also actually in most industrial SD projects [9, 10].  Here we 
present our ideas in terms of the waterfall model, but in fact the proposed course 
design can be implemented with the use of other process models, such as Boehm’s 
spiral model and the agile processes [10]. 

In a typical SD course, the instructor has to form student groups, create software 
projects, allocate projects to different student groups, define the project phases, and 
prepare the document templates for students to record their intermediate and final 
work.  When the work in each phase is completed, students should submit their 
intermediate deliverables to the instructor for assessment and feedback.  The 
intermediate deliverables typically include requirement specifications, design models, 
test plans, progress logs and quality assurance reports [15, 16].  The performance of 
students should therefore be monitored and evaluated by assessing the quality of 
students’ intermediate deliverables. 

Learning of SD is communication and collaboration intensive.  As each group 
works on the project, peer learning and review of intermediate work should be 
encouraged in order to maximise students’ learning experiences.  Thus, each group 
should share their work for comments by other groups.  Fig. 1 depicts the flow of the 
tasks normally done by the instructor and students in a SD course [15]. 

Typically, tutorial sessions can be arranged so that students may discuss their work 
with other groups.  However, such an arrangement has become increasingly difficult 
due to the limited F2F contact time, high student-to-instructor ratio and rigid class 
scheduling.  Time and resource limitations often hinder the learning and teaching 
progress as well as the motivation of students in SD courses.  Collaborative learning 
activities that are desirable beyond lectures and tutorials, such as in-depth group 
discussion, skills and experience sharing sessions, and technical information exchange, 
are also highly constrained when carried out in F2F settings.  As such, students often 
receive little and/or delayed feedback from the instructor and fellow students.  
Moreover, this phenomenon is dissonant to the quality-centric notion that is 
advocated in SD courses and the industry’s recommended best practices [2, 16].  



 

 

Manage 
student 
groups

Assign 
groups to 
projects

Create 
projects

Do project

Give 
appraisal 

and marks

Get appraisal  
and marks 

from 
instructor

Share work 
to other 
groups

Get 
comments 
f rom other 

groups

Enhance the 
work

Search for 
supple-
mentary

information

Discuss 
within and 

among 
groups

Define 
project  
phases

Submit 
intermediate 
deliverables

Comment on 
other 

groups’
work

Instructor 
Tasks

Student 
Tasks

Design 
projects

Form student 
groups

Fig. 1. Tasks to be done by instructors and students in a SD course [15] 

2.2   E-Learning 

More and more organizations begin to use e-learning as the major form of educational 
delivery, including universities, corporations, military institutions, and secondary 
schools [8].  On-demand availability of e-learning complements the routine 
structures of traditional classes by allowing students to participate and complete their 
coursework with flexible schedules in accordance with their daily family or work 
commitments, enabling more engaging learning materials to be accessible for a range 
of abilities and preferred learning styles, encouraging the development of an 
independent learning culture by making learning more inviting, and providing unique 
opportunities for active feedback from different participants.  These benefits are 
particularly pertinent to our university in which the student population has a diverse 
background and different study modes, including the part-time evening mode [1, 16]. 

However, there are still values in the traditional classroom learning environment.  
In a typical SD course, the instructor has to offer guidance to students, encourage 
students to raise questions, provide comments and feedback, and act as the moderator 
to keep students on track.  The classroom setting can promote social and cultural 
interactions among the instructor and students, facilitate mutual understanding 
through non-verbal communication mechanisms such as body language and eye-



 

 

contact, and encourage peer-to-peer learning.  As such, a hybrid mode of learning 
can be much more effective than pure F2F learning or e-learning alone [14]. 

3   TREASURE: A Tool for Software Development Courses 

Presently, a variety of course management systems are widely available, such as 
WebCT, Blackboard, and Moodle, and are commonly used in educational institutions.  
Through such a system, students can retrieve course learning materials, such as 
lecture notes, recommended readings, quizzes, assignments, assessment records, and 
surveys.  The instructor can also make announcements to alert students whenever 
there are updated course learning materials or special arrangements in the 
forthcoming classes.  Moreover, the instructor can create assignments to be 
completed by students who can later retrieve their results from the assessment 
database.  Discussion boards provide facilities for online discussions among the 
instructor and students, enabling them to exchange information and share experiences. 

However, these course management systems are not specifically designed for SD 
courses.  They fall short of facilities for software project management such as 
managing student groups on a project basis and assigning projects to student groups.  
Peer review of software project work is not conveniently supported in these general 
course management systems.  In order to better leverage the e-learning benefits, we 
have developed a Web-based tool, called TREASURE, to supplement our university’s 
standard e-learning platform, Blackboard [14, 15]. 

TREASURE is built to facilitate the interactions needed for SD courses.  It has to 
satisfy two major types of requirements for interactions, namely, Group Management 
and Project Management.  Through the Group Management functions, the instructor 
can keep track of the membership of all the student groups, as well as the assignment 
of projects to groups.  The Project Management functions allow the instructor to 
define new projects and their phases, enable within-group discussions and information 
sharing, as well as peer inter-group reviews, and provide facilities for the instructor’s 
appraisal and assessment of the intermediate or final products of the projects. 

To make the best use of the existing e-learning system, we design TREASURE as 
a plug-in module to Blackboard.  TREASURE utilizes many of the Blackboard 
system’s built-in databases and facilities, including (1) the Student Groups database 
for group management, (2) the Grade Book database for assessment, (3) the Content 
Folder database for storing learning materials, and (4) Forum for students to hold 
online discussions. 

We use Java Server Page (JSP) to implement the Web pages of TREASURE. 
Teachers and students access different pages according to their roles in Blackboard.  
To satisfy the Group Management requirements, we use the built-in Blackboard APIs 
to access the basic group management features provided by Blackboard.  Our tool 
provides a single and easier-to-use interface for teachers to add, modify and delete 
student groups, and to enroll students to groups in a batch or manually one by one.  
A new Java class for managing an external database of all project information is 
created to satisfy the Project Management requirements.  In this way, the contents of 
the Project database will not affect the integrity of Blackboard’s internal system data. 



 

 

Throughout the requirements validation and other stages of the development of 
TREASURE, all stakeholders [4] (including instructors and students) are invited to 
provide feedback to its intermediate versions to validate the requirements and 
functions.  All these activities are instrumental in ensuring that TREASURE can be 
usefully incorporated into our proposed hybrid learning approach for SD courses [15]. 

4   A Pilot Hybrid Learning Course on Software Development 

In this section, we describe a pilot postgraduate SD course for preliminary evaluation 
of the hybrid learning design.  The course relies heavily on TREASURE to provide 
the e-learning facilities that support the hybrid learning implementation.  We shall 
first outline the course and its project work, and then describe in detail the learning 
activities and the use of TREASURE in satisfying the requirements of these activities. 

4.1   The Course and the Project 

Software Quality Engineering is a course offered to part-time students in the MSc 
Computer Science programme.  Most students are software practitioners with 1 to 5 
years of working experience.  One of the course objectives is to enable students to 
develop and apply a working knowledge of good management and engineering 
practices for the production of high quality software.  The coursework component 
requires students to work in teams on a project for the development of part of a real 
software system, with emphasis on using the methods of software inspection, peer 
technical review and independent verification and validation (IV&V) as the means of 
effective software quality engineering.   

The project requires students to collaborate with their teammates in analyzing and 
verifying the requirements, designing the architecture as well as implementing a 
prototype of the software system.  The project is divided into phases.  At each 
phase, the instructor needs to monitor the progress of the project groups, and provide 
supervision and feedback to students.  In addition, students have to review and 
comment on other groups’ work at some phases of the project for the purpose of 
IV&V.  The project work includes individual work done by students at their own 
time, group work done via F2F meetings in tutorial classes, as well as work done via 
communications and interactions in TREASURE. 

4.2   The Course Learning Activities 

At the beginning of the course, students form project groups by themselves and notify 
the course instructor.  The instructor then manages the project groups’ details by 
using the group management functions provided by TREASURE (Fig. 2). 

Before the project kicks off, the instructor has to design a project by defining the 
required phases and deliverables that students are required to submit.  The instructor 
then assigns dedicated student groups to the projects and phases.  In this pilot course, 



 

 

all student groups are required to do the same project.  In other courses, different 
student groups may be assigned to do different projects. 

 

 

Fig. 2. Adding students to project groups 

Once the project commences, students apply the knowledge they acquire in their 
study to do the project and to produce the required deliverables for various phases.  
Fig. 3 shows a snapshot of the use of TREASURE, which provides a single entry 
point for students to manage their project in a convenient manner.  Students may 
collect the required reading materials, submit deliverables, communicate with one 
another and receive appraisal from the instructor through this interface. 

We now describe the course learning activities in detail.  Initially, a requirements 
specification of part of a real software system, seeded with a number of defects by the 
instructor, is given to students.  Students apply the various SQE techniques learned 
in class to complete the project based on the given requirements specification. 

The project proceeds in 5 phases.  In Phase 1 Requirements Inspection, students 
are required to study and analyze the requirements specification individually using the 
perspective-based reading (PBR) method [11].  They are required to submit the 
individual potential defect list and the project plan as the first part of the Inspection 
Report at the end of this phase via the submission link in TREASURE (Fig. 3).  
While the defect detection can be done individually, students in the same group have 
to collectively decide a project plan.  Since all students have full-time job and it is 
very difficult to arrange F2F meetings within the short time duration of this phase, 
they have to communicate electronically in planning the project.  The instructor may 
also participate in the electronic discussions to monitor students’ progress or help 
those who have difficulties in their project planning. 

In Phase 2 Requirements IV&V, students have to arrange two formal inspection 
meetings to review the requirements specification and to compile an agreed defect list 
and a revised requirements specification to be included in the second part of their 
Inspection Report. The first inspection meeting is held by the group members 
themselves.  During the meeting, each group follows the Fagan’s inspection 



 

 

process [5] as closely as practicable.  The second meeting is held by a third party to 
perform IV&V.  Both meetings are done in the classroom so that students can 
experience the F2F software quality assurance practice that takes place in real life. 

In Phase 3, students work together to produce a detailed design document that 
includes system architecture and design modelled by data flow diagrams or UML 
diagrams, database tables, data structures as well as the algorithms of the system 
components.  They have to surf the Web for supplementary learning resources.  
This kind of self-learning activities may apply to other project phases as well.  To 
facilitate effective self-learning, we have compiled a set of useful Web resources for 
students’ references.  Fig. 4 shows the Web page of SD resources for the course. 

After completing their work, students upload their draft intermediate deliverables 
to TREASURE for other groups to comment.  In the mean time, the instructor may 
also comment on students’ work drafts.  Afterwards, each group can improve their 
work based on the comments they receive before formal submission for assessment. 

Fig. 5 shows the interface of TREASURE through which students may view and 
comment on the work of other groups.  In conventional classes, it may take a long 
time to complete this activity.  To allow students to give F2F comments on the work 
of others, some precious tutorial class sessions may be needed.  Similarly, it is also 
hard for the instructor to give appraisal promptly.  Nor is it feasible for the instructor 
to give F2F comments to each student individually in class, as while talking to one 
student, other students would have to waste their time waiting for their turns in class.  
Without tool support, timely comments would be very difficult to implement. 
At the completion of Phase 4 Prototype Development, students perform a F2F 
demonstration of their system prototype to other students and also review other 
students’ draft prototype so as to provide comments for mutual improvement.  The 
peer review of the system prototype is based on its conformance to the system 
requirements, consistency of the interface and usability of the system.  The work in 
this phase is done F2F in tutorial classes.  Similar to Fig. 5, there is another area in 
TREASURE for students to upload their comments in this phase. 

In the final phase, students revise their draft system prototype according to the 
comments from the instructor and other students.  Meanwhile, they have to submit 
an acceptance test plan together with a consolidated final report in which all relevant 
information about the prototype should be documented.  Instructor can then mark the 
student submissions and give appraisals to each individual student via TREASURE. 

5   Related Work 

One work related to ours is the Web-based Collaboration Support Sub-system of an 
Education Support System developed in Tokyo Gakugei University [7].  The system 
allows instructors to act as inspectors to review and comment on the artifacts created 
by students.  It also supports version and configuration management of the submitted 
artifacts.  To monitor students’ progress, the system keeps track of different states of 
the artifacts being inspected.  A bulletin board is provided for discussion between 
individuals within group, among groups, and between groups and the instructor side. 



 

 

 

Fig. 3. TREASURE allows students to manage their activities online 



 

 

 

Fig. 4. Software design reference materials in software engineering resources blog [13] 

Another related work is the ClassCompass system developed in the University of 
British Columbia as a distributed tool for group design mentoring [3].  It consists of 
several components: the ClassCompass Server, Instructor Client and Student Client.  
It provides a Web-based graphical editor for students to edit their UML diagrams.  
An automatic critique system generates expert advice when common design mistakes, 
such as association cycle and unnecessary realization, are found.  Students can then 
revise their designs based on the generated advice.  After submitting their own initial 
designs, students can critique on other groups’ work, based on design principles that 
are pre-defined by the instructor.  Instructors can act as experts to view the designs 
and manually provide feedback to students so that they may refine their design. 

In short, the Web-based Collaboration Support Sub-system is designed to facilitate 
the inspection activities performed at the testing phase, and ClassCompass provides 
functionalities for mentoring the activities of students performed at the design phase.  
While each of these two learning support systems is specifically designed for a 
particular phase of the SD process, TREASURE realizes our hybrid learning approach 
at both the activity and course levels by assisting both the instructor and students in 
the entire SD life cycle.  Secondly, the two learning support systems are standalone 
systems, whereas TREASURE is a plug-in tool built on the Blackboard architecture to 
take advantage of the functions of the existing e-learning platform.  Thirdly, while 
the two learning support systems do not provide any functionalities for project group 
management, TREASURE supports the formation of project groups for different 
projects.  As a plug-in tool, TREASURE requires less learning effort than if built 
otherwise, because students are already familiar with the user interface elements and 
user interaction metaphors of the Blackboard system. 

Finally, even though many commercial tools, such as Microsoft Project, can 
facilitate software project management, they are not designed for teaching and 



 

 

learning in SD courses.  There are also tools (such as Rational Rose) designed for 
computer-aided software engineering, but they do not have appraisal functions. 
TREASURE is specifically built for the purpose of teaching, learning and assessment 
in SD courses, with the expectation of realizing our hybrid learning course design. 

 

Fig. 5. View and comment on other groups’ work  

6   Conclusion 

In a conventional classroom, many factors hinder learning in a SD course, such as the 
limitation of time for interaction among participants, resource constraints such as high 
student-to-instructor ratio, and the diversity of students’ backgrounds and study 
modes.  A SD course requires students to do group project work to practise software 
engineering principles and proven techniques.  Timely feedback and regular peer 
reviews are essential not only to ensure the quality of the product, but also to enhance 
students’ learning experiences.  The use of asynchronous communication can help 
improve students’ skill of team work and time management.  All these factors call 
for the adoption of a hybrid approach combining classroom learning and e-learning. 

This paper has described the rationale of using a hybrid approach in SD courses 
and the learning activities in a pilot run of such a course, which utilizes our custom-
built tool, TREASURE, to organize a non-trivial software project for students to learn 
the essentials of software quality engineering practices. Looking ahead, it would be 
desirable to integrate TREASURE with students’ SD environment as far as possible.  
Most intermediate deliverables or products of a software project such as design 
models and software prototypes have to be assessed for evaluating students’ progress.  
Further work may be done to automate more parts of the assessment processes by 
integrating our tool with other project assessment tools. 



 

 

Acknowledgment.  We thank Roy Au for his work in developing TREASURE, and 
Alfred Chan for helping out in the course.  A preliminary version of this paper was 
earlier presented at the Symposium on Hybrid Learning 2007 [13]. 

References 

1. Choy, M., Lam, S., Poon, C.K., Wang, F.L., Yu, Y.T., Yuen, L.: Towards Blended 
Learning of Computer Programming Supported by an Automated System. In: Workshop on 
Blended Learning 2007, pp. 9–18, Prentice Hall (2007) 

2. Ciolkowski, M., Laitenberger, O., Biffl, S.: Software Reviews: The State of the Practice. 
IEEE Software 20(6), 46–51 (2003) 

3. Coelho, W., Murphy, G.: ClassCompass: A Software Design Mentoring System. ACM J. 
on Educational Resources in Computing 7(1), Article 2 (2007) 

4. Damian, D.: Stakeholders in Global Requirements Engineering: Lessons Learned from 
Practice. IEEE Software 24(2), 21–27 (2007) 

5. Fagan, M. E.: Design and Code Inspections to Reduce Errors in Program Development. 
IBM Systems Journal, 15(3), pp. 182–211 (1976) 

6. Graham, C.R., Allen S., Ure, D.: Benefits and Challenges of Blended Learning 
Environments. In: Khosrow-Pour, M. (ed.) Encyclopedia of Information Science and 
Technology, pp. 253–259. Hershey, PA: Idea Group (2005) 

7. Hazeyama, A., Nakako, A., Nakajima S., Osada, K.: Group Learning Support System for 
Software Engineering Education – Web-based Collaboration Support between the Teacher 
Side and the Student Groups –. In: First Asia-Pacific Conference on Web Intelligence: 
Research and Development. LNAI, vol. 2198, pp. 568–573. Springer-Verlag (2001) 

8. Koohang, A., Durante, A.: Learner’s Perceptions toward the Web-based Distance Learning 
Activities/Assignments Portion of an Undergraduate Hybrid Instructional Model. J. Inform. 
Tech. Edu. 2 (2003) 

9. Laplante, P.A., Neill, C.J.: ‘The Demise of the Waterfall Model Is Imminent’ and Other 
Urban Myths. ACM Queue 10(1) (2004) 

10. Neill, C.J., Laplante, P.A.: Requirements Engineering: The State of the Practice. IEEE 
Software 20(6), pp. 40–45 (2003) 

11. Shull, F., Rus, I., Basili, V.: How Perspective-based Reading Can Improve Requirements 
Inspections. IEEE Computer 33(7), pp. 73–79 (2000) 

12. Young, J.R.: ‘Hybrid’ Teaching Seeks to End the Divide between Traditional and Online 
Instruction. The Chronicle of Higher Education 48(28) (2002) 

13. Yu, Y.T., Choy, M.Y., Chan, E.Y.K., Lo, Y.T.: Learning of Software Project Development: 
Towards a Hybrid Approach. In: Fong, J., Liu, L.C., Wang, F.L. (eds.) Hybrid Learning: 
Symposium on Hybrid Learning 2007, pp. 333–338 (2007) 

14. Yu, Y.T., Choy, M.Y., Chan, E.Y.K., Lo, Y.T.: A Web-based Tool for Software Project 
Coursework: Requirements, Validation and Implementation. Presented at the 2007 
International Conference on ICT in Teaching and Learning, Hong Kong (2007) 

15. Yu, Y.T., Choy, M.Y., Chan, E.Y.K., Lo, Y.T.: Requirements and Design of a Web-based 
Tool for Supporting Blended Learning of Software Project Development”. In: Hirashima, 
T., Hoppe, U., Young, S.S.-C. (eds.) Supporting Learning Flow through Integrative 
Technologies — Proceedings of the 15th International Conference on Computers in 
Education (ICCE 2007), pp. 159–166. IOS Press (2007) 

16. Yu, Y.T., Poon, P.-L.: Designing Activities for Learning Software Quality Practices. In: 5th 
International Conference on Quality Software (QSIC 2005), pp. 333–338. IEEE Computer 
Society Press (2005) 

 


