
L2Code: An Author Environment for Hybrid and
Personalized Programming Learning

Ramon Zatarain-Cabada, M. L. Barrón-Estrada, J. Moisés Osorio-Velásquez,
L. Zepeda-Sánchez, and Carlos A. Reyes-García *

Instituto Tecnológico de Culiacán, Juan de Dios Bátiz s/n Col. Guadalupe, C.P. 88220
Culiacán, México, tel. +52 667 7131796

rzatarain@itculiacan.edu.mx
* Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE)

Luis Enrique Erro No. 1, Sta. Ma. Tonanzintla, Puebla, 72840, México
kargaxxi@inaoep.mx

Abstract. L2Code is an Intelligent Tutoring System used for teaching
programming courses for different paradigms under a hybrid or blinded
environment. It was designed and implemented to work with diverse types of
modules oriented to certain ways of learning using principles of Multiple
Intelligences. The author tool facilitates the creation of adaptive or personalized
learning material to be used in multiple-paradigm programming language
courses applying an artificial intelligence approach. The Tutoring System works
with a predictive engine that uses a Naive Bayes classifier which operates in
real time with the knowledge of the historical performance of the student. We
show results of the tool.

1 Introduction

Teaching and Learning a programming language is in general considered a tough job,
and programming courses usually have high abandon rates. Research has proven that
for a beginner to become an expert programmer he might spend more than 10 years
[1]. A great amount of educational research has been made to distinguish the
characteristics of beginner programmers and to study the learning process and its
associations to the different aspects of programming [2, 3]. Lately also differences
between procedural and object-oriented education approaches have been studied, as
Java and C++ have become common educational languages [4]. Some research show
the difficulties of Object oriented programming by performing a web-based survey for
both students and teachers [5].

Our proposal is an Intelligent Tutoring System (ITS) designed to accept diverse
types of programming language paradigms oriented to different ways of teaching and
learning like e-learning and classroom learning and by using the principles of
Multiple Intelligences [6]. This system, named L2Code, can dynamically identify the
learning characteristics of the student [7] and provide him personalized material
according to his type of intelligence. The different programming modules can be
conveniently produced by any instructor. It is only necessary to specify which

resources refer to which types of student intelligences, and which evaluation will be
part of the different modules of the ITS. This is necessary in order to measure the
student performance and to improve the prediction of the best learning resource. A
predictive engine for L2Code works with a Naive Bayes classifier [8] which operates
in real time with the knowledge of the historical performance of the student.

The organization of the paper is as follows: In Section 2, we present the
architecture of L2Code describing each one of the module components. In Section 3,
we discuss the implementation of several important algorithms used in the software.
Test and results are shown in Section 4. Comparison to related work is given in
section 5 and conclusions are shown in Section 6.

2 Architecture of L2Code

The general architecture of the system (Figure 1) includes a set of components that
allow modularization, scalability, and maintainability of the system.

The server is the one in charge to provide the complete course that comes to be a
package of different resources with its respective evaluations. The server is not more
than an abstract entity, since can be distributed in internet by a Web site, or directly
by the creator of the course.

Fig. 1. General architecture of L2Code

The client contains the ITS. It has the following components:
• Domain Module. It is the one in charge to encapsulate the content of the course,

such as concepts and learning units with their respective resources.
• Presentation Module. It is the one that works with certain unit of learning, like

waking up the student, explaining some concepts, reinforcing the content or simply
transferring new knowledge.

• Pedagogical Module. It is the one in charge of the tutor, making functions such as
detecting errors in the answers of the student, and feed backing and guiding the
student towards the correct solution.

• AI Module. Fundamental part in the operation of the pedagogical module, since it
is the one that really detects the type of solution for the student, correct or
incorrect, therefore the pedagogical module only worries about the feedback
process.

• Predictive Engine. Its function is the one to calculate the probability that the
student has taken the correct course, according to its type of intelligence measured
in the degree of assimilation of the learning unit. With this calculation, the
predictive engine is able to predict which would have to be the following resource
that the student would have to take.

2.1 Learning Process in L2Code

The learning process in a module starts by describing basic information like name,
objectives, previous and further knowledge of the module. Next, the visualization of
theoretical content is shown, and then a corresponding evaluation is performed. In this
process, there exist an assistant to the student on the solution of the problems. And
finally the results of the student are shown with a corresponding feedback.

2.2 Predictive Engine

As we defined previously, the predictive engine is the one in charge to compute the
probability that a student corresponds to certain type of learning resource, predicting
the ideal one that the student would have to attend.

The input of the engine is formed by the results of the evaluation done to the
student after the conclusion of a learning resource, and the attributes used for the
evaluation, obtaining as an output the learning type of the student. This way we can
indicate the correct resource for the student.

The following attributes have been chosen to reflect how the students use the
different resources:

• Time (F, N, L). There is a range of time specified by the course creator: Fast,
Normal, and Long.

• First choice (Yes, No). Yes if the student answer is the first one he/she chose;
No otherwise.

• Question attempted (Yes, No). Yes if the student attempts to answer a
question; No otherwise.

• Accuracy (0..1). Measures the approximation of the student answer with
respect to the correct answer. This computation depends of the evaluation type
defined by the course creator.

• After determining the probability of each question, the probability
corresponding to the module (resource type) is calculated considering the
following attributes:

• Repeat (Yes, No). Yes if the student had already seen this resource; No
otherwise.

• Code value (0..1). This value is defined by the course creator and says what
percentage must be assigned to code questions.

• Intelligence (VL, LM, VS, MR). It defines the type of student intelligence.
According to Gardner theory [10] there are seven intelligences. We deal with
four of them: Verbal/Linguistic, Logical/Mathematical, Visual/Spatial, and
Musical/Rhythmic.

3 Implementation

The development of the system was made by following a cascade model with a
modular development under the UML language [9, 10]. The system was implemented
with Java™ [11]. L2Code makes use of two external packages that are: JDOM [12]
for the XML reading and writing and SWT (Standard Widget Toolkit) [13] for the
creation of native graphical interfaces.

3.1 Naive Bayes Classifier Algorithm

This algorithm (Figure 2) is in charge of the probabilistic computations for making
prediction of the right student learning resource. During the interaction of the student
with the learning module the attributes of this interaction are recorded and, when
finishing it, the corresponding probability of the actual learning resource is updated.

Fig. 2. Naïve Bayes classifier algorithm

3.2 Evaluation Algorithms

In the process of evaluation of the learning module we define four different
evaluations:

• Multiple Options. It offers a series of possible answers, where only one
answer is correct.

• Keywords. Here we evaluate the answer of the student based on the amount
of correct keywords that the answer contains. The algorithm is explained in
Figure 3.

Fig. 3. Evaluation with keywords

• Edit Distance. It allows also free answers from the student, but the evaluation

method is oriented to a minimum number of characters that must be
eliminated, inserted or interchanged so the answer of the student is identical to
the correct answer. This is explained in Figure 4.

Student answer

For each keyword Wi in the student answer a search is
made in the correct answer

A percentage of the number of matched keywords
between student and correct answers is determined. If this

number is higher than a defined limit then the answer is valid.

During learning unit LUk, identify values for attributes a1 .. an

At the end of learning unit LUk
• For each class value vj create instance Instkj
• Update student’s statistics with ∑j=1

vmaxInstkj

At the start of LUk+1 make vpred prediction on preferred resource

Fig. 4. Evaluation with edit distance algorithm

• Practice Evaluation (Code Problem). This type of evaluation (see Figure 5)

was implemented to evaluate code and to provide hints to the student
throughout its development and, at the end, a feedback of its answer is
returned.

Fig. 5. Algorithm for practice evaluation (code problem)

Student answer

It is verified that the student answer as be in the correct
answer set Ac (as ∈ Ac)

If the student answer belongs to the correct answer set
then the answer is valid, else, it is searched in the incorrect

answer set and it is chosen the most likely answer
following the edit distance algorithm

Student answer

For each character Ci from the student answer it is
calculated the cost of removing, inserting or changing

characters to be equals to correct answer.

The minimum cost is calculated from the above
operations. If the reached percentage from the answer

length divided for that minimum cost is not greater than
the limit then the student answer is valid.

4 Experimental Results

We will present an example for an object-oriented programming (OOP) course. This
course is offered in the computer engineering program of our institution (Instituto
Tecnológico de Culiacán). Figure 6 shows the interface of one of the topics. We can
observe on the left bottom side of the figure, when the system makes a prediction of
the learning style of the student (visual/spatial). We also observe at the right bottom
side, the different learning styles the student can choose.

Learning StylesLearning Prediction
(visual/spatial)

Learning StylesLearning Prediction
(visual/spatial)

Fig. 6. Choosing the Learning Style

Topic content of multiple inheritances and topic assessment with results are shown
in figures 7 and 8.

Fig. 7. Course Topic Content

Fig. 8. Interfaces for Topic Assessments and Results

When the student has finished attending one learning module and has been

evaluated, a probabilistic value is determined and used for the prediction of the type
of intelligence. In order to be able of comparing the final calculation with the rest of
the other learning resources and to determine the appropriate resource for the student,
this probabilistic value is stored and merged with the rest of the calculations made to
the learning resources of the same type. Table 1 shows a student interaction with
L2Code. The interaction was in a module with Visual/Spatial intelligence type and the
characteristics are shown in Table 2.

Table 1. Student interaction

Student answer Response time
methods 10
Declaration and body 35
constructor 10
True 80
“()” 20
name body arguments 80
new 25
usr = new User() 100

Table 2. Module evaluation characteristics

Correct answer Evaluation type Normal time Long time Min. accuracy
method Edit distance 15 60 80
Declaration body Multiple options 10 60 100
constructor Edit distance 15 60 80
False Multiple options 10 30 100
{} Multiple options 10 30 100
Return name Keywords 15 60 75
new Keywords 10 30 100
usr = new User(); Code problem 30 300 100

In Table 3 we show the results of the student interaction (probabilistic

computations).

Table 3. Probabilistics results for student interaction

Accuracy Probability
83 0.83
100 0.90
100 1.00
0 0
0 0
75 0.60
100 0.90
94 0.85

As this learning module had assigned a 20% to the practical evaluations (this is

designed by the module creator), the probability that this resource has facilitated the
learning to the student is of 0.65. This value later is added to the calculations done to
other resources of the same type. Thus, at the beginning of another resource, the
probabilities can determine that the student belongs to certain characteristics of
learning.

In the last part, the results of the student evaluation are shown. It is necessary to
indicate that the result is different from the one used for calculating the learning type.

5 Related Work

Research in this area has been oriented for teaching single programming languages
and most of the time for introductory courses. ITEM/IP [14] is an ITS for teaching
programming. ITEM/IP is only oriented to provide an introductory course to Turingal
(a programming language). GREATERP [15] is another ITS based on Anderson’s
theory of learning and oriented for teaching the LISP programming language. A
system named BITS [16] is also oriented for teaching only one programming
language. One disadvantage of those systems is that they are oriented to just one
programming language.

6 Conclusions

L2Code predicts the best learning resources and style for the students. The learning
modules are a set of features that describe when the learning resource must be
presented to the student. When starting any particular unit, the predictive engine
calculates which resource the student must use for his learning process.

At present some empirical studies are taking place to analyze the reaction of
students to the Object-Oriented Programming Course produced with L2Code. The
course combines e-learning and classroom material. This study is examining
instructional strategies due to the relationship between them and the learning
performance.

Future work involves more implementation development of a user-friendly
interface to create courses and further analysis in order to identify the relevance of
different features. Also, we are working with other machine learning techniques.

References

1. Soloway, E. & Spohrer, J. Studying the Novice Programmer, Lawrence Erlbaum
Associates, Hillsdale, New Jersey. 497 p., ISBN: 0805800026, 1988.

2. Barr, M., Holden, S., Phillips, D. & Greening, T. “An exploration of novice
programming errors in an object-oriented environment”, SIGCSE Bulletin, 31(4), pp. 42-
46, 1999.

3. Deek, F., Kimmel, H. & McHugh, J. “Pedagogical changes in the delivery of the first-
course in computer science: Problem solving”, The Programming. Journal of
Engineering Education, 87, pp. 313-320, 1998.

4. Wiedenbeck, S., Ramalingam, V., Sarasamma, S. & Corritore C. “A comparison of the
comprehension of object-oriented and procedural programs by novice programmers”,
Interacting with Computers, 11(3), pp. 255-282, 1999.

5. McCracken, M., Almstrum, V., Diaz, D., Guzdial, M., Hagan, D., Kolikant, Y.B., Laxer,
C., Thomas, L., Utting, I. & Wilusz, T. “A multi-national, multi-institutional study of
assessment of programming skills of first-year CS students”, SIGCSE Bulletin, 33(4),
pp. 125-180, 2001.

6. Gardner H. Frames of Mind: The theory of multiple intelligences. New York. Basic
Books, 1983.

7. Declan Kelly, Brendan Tangney: “Predicting Learning Characteristics in a Multiple
Intelligence Based Tutoring System”, Proceedings of the Seventh International
Conference on ITS (ITS 04), Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2004.

8. Markus Lang: “Implementation of Naïve Bayesian Classifiers in Java”,
http://www.iit.edu/~ipro356f03/ipro/documents/naive-bayes.doc.

9. Ian Sommerville. Software Engineering, Addison-Wesley, ISBN 020139815X, 2001.
10. Robert Cecil Martin: UML for Java Programmers, http://books-

support.softbank.co.jp/isbn/pdf/2513.pdf.
11. Gosling, Joy, Steele, Bracha: The Java™ Language Specification.
12. Jason Hunter, Brett McLaughlin: JDOM™ Project, http://www.jdom.org.
13. Eclipse Foundation: SWT (Standard Widget Toolkit), http://www.eclipse.org/swt.

14. P. L. Brusilovsky. Intelligent Tutor, Environment and Manual for Introductory
Programming, Innovations in Education and Teaching International, Volume 29, Issue 1,
pages 26 – 34, 1992.

15. Brian Reiser, John Anderson, Robert Farrell: “Dynamic Student Modeling in an
Intelligent Tutor for LISP Programming”, IJCAI, pages 8-14, 1985.

16. C. J. Butz, S. Hua, R. B. Maguire. “A Web-Based intelligent Tutoring System for
Computer Programming”, Proceedings of the 2004 IEEE/WIC/ACM International
Conference on Web Intelligence, p.159-165, 2004.

