
Experiences in Hybrid Learning with eduComponents

Mario Amelung and Dietmar Rösner

Otto-von-Guericke-Universität, FIN/IWS
P.O. Box 4120, 39016 Magdeburg, Germany

{amelung,roesner}@iws.cs.uni-magdeburg.de

Abstract. Since five years we practice hybrid learning in all our courses by
combining classroom lectures and group exercises with Web-based e-learning. In
this paper we reflect the experiences with our learning environment and discuss
the changes in teaching and learning that resulted from the new approach as well
as pedagogical concerns and policy issues.

1 Introduction

Before we introduced a hybrid learning environment—made up as a combination from
classroom teaching and e-learning—for computer science courses at the University of
Magdeburg, we were dissatisfied with some aspects of the traditional way of teaching,
practicing and assessing. The traditional way of exercises in a classroom only manner
may be sketched as follows:

– design or choose assignments for a weekly exercise sheet according to the state of
the course,

– distribute a printed or online PDF version of the exercise sheet,
– students work through the exercise sheet at home,
– in classroom sessions

• students present their solutions at the blackboard,
• tutor and peers give (spontaneous) feedback,
• peers take notes from the presentation and
• the tutor may take notes about student’s performance.

As a variation written submissions may be demanded for that are checked by tutors.
But there is always a delay between submission and the reception of the corrected
version with comments. For large groups of students manual correction is labor and time
intensive.

However, we wished to offer students more detailed discussion on their solutions and
problems, more timely feedback, as well as more opportunities to apply their knowledge
and to exercise their skills. Especially for programming assignments, the traditional way
of handing in programs on paper and discussing them on the blackboard was not very
motivating for our students. This approach is only viable for very small programs, and
practical problems (e.g., syntax errors) are hard to detect.

In addition, we also wished that teachers were liberated from avoidable (administra-
tive) work and were provided a better overview of the performance and progress of the
class.



Now, with the hybrid learning environment based on eduComponents (cf. below) the
exercise courses for computer science and programming lectures follow a significantly
changed process which may be summarized as follows:

– Design or choose tasks for weekly exercise sheet according to state of the course,
additionally take automatic testability into account.

– Make online version of weekly exercise sheet accessible
– Students should work through exercise sheet and
– submit their solutions via an interactive Web interface (using ECAssignmentBox or

ECAutoAssessmentBox, cf. below);
– They get immediate feedback and may re-submit improved versions.
– In preparation of the classroom session the tutor gets a complete overview over of

the performance of the group as well as of each single student.
– During classroom session students present their solutions using laptop and beamer.
– Peers get online access to all alternative solutions.

In sum: in contrast to a traditional way of teaching which is primarily paper based,
our hybrid learning environments makes extensive use of the benefits of electronic
documents in combination with the Web.

We have reported about details of eduComponents and the aspects of computer-aided
assessment (CAA) elsewhere (e.g., [1], [2], and [3]). In this paper we concentrate on
the issues of hybrid learning, i.e., in our case the relation between face-to-face lectures
and group exercises and the Web-based e-learning functionalities.

The paper is organized as follows: In section 2 we give an overview of eduCompo-
nents, our collection of modules for e-learning and computer-aided assessment. We then
describe how eduComponents are employed in our hybrid learning environment. This
is followed by a discussion of experiences and lessons learned in section 4. Finally, we
summarize our experiences and illustrate some future options for further improving the
learning opportunities for students.

2 eduComponents: Design, Implementation and Functionality

Instead of using a separate learning management system (LMS), which would have
required additional training and administration, we have chosen a different approach
for the hybrid learning environment: A component-based architecture using a general-
purpose content management system (CMS) as the basis.

The use of a CMS as foundation for a hybrid learning environment is motivated by
the observation that a large percentage of both traditional as well as e-learning is actually
document management: Most activities in higher education involve the production,
presentation, and review of written material. Thus, instead of re-implementing basic
content management functionality, we base our environment on a general-purpose CMS,
which provides a reliable implementation of basic document management functionality.
In our case this is the open-source content management system Plone1.

1 http://plone.org/

http://plone.org/


The e-learning-specific functionality is implemented by extension modules for Plone.
We have designed, implemented and deployed a number of Plone modules—collectively
called eduComponents2—that provide specialized content types offering the following
main functions (see also [2] and [4]):

– ECLecture: A portal for learning objects, course information and registration.
– ECQuiz: Electronic multiple-choice tests.
– ECAssignmentBox: Electronic submissions for assignments (e.g., essays) and sup-

port for the process of assessment and grading.
– ECAutoAssessmentBox: A version of ECAssignmentBox with automatic testing and

assessment of assignments with immediate feedback.
– ECReviewBox: An add-on for ECAssignmentBox allowing teachers to create peer

review assignments.

These components can be used separately or in combination and, since many basic
functions are already provided by the CMS, they already implement much of the standard
functionality required in an e-learning environment. If additional features are required,
e.g., a discussion forum, bibliographies, a glossary, a Wiki, or domain-specific content
types, they can be integrated by adding other Plone modules. The component-based
architecture thus makes it easy to create tailor-made learning environments both for
pure online learning as well as for hybrid learning scenarios. Also, all components use a
uniform content representation. All objects in Plone are documents (or folders containing
documents) and can be manipulated in the same way, regardless of whether the document
is a multiple-choice test or an image. This ensures a consistent and easy-to-learn user
interface. The rest of this section describes the individual components in more detail.

2.1 ECLecture

ECLecture is a Plone module for managing lectures, seminars and other courses. ECLec-
ture objects group all course-related information—including course metadata (such as
title, instructor, time, location, credits, etc.)—and resources. ECLecture objects can thus
serve as a “portal” to all course-related materials like slides, exercises, tests, or reading
lists. These materials are managed using the appropriate content types (e.g., ECAssign-
mentBox for assignments, ECQuiz for tests, or PloneBoard for discussion forums) and
appear as resources to the course. Since an ECLecture object is a folder-like object, these
resources can be stored inside of it, but they can also be stored somewhere else, even on
another server. ECLecture also handles the online registration for courses and exercise
groups.

2.2 ECQuiz

ECQuiz supports the creation and delivery of multiple-choice tests (see also [5]).
Multiple-choice tests are especially useful as formative tests to quickly assess the

2 All eduComponents modules are freely available as open-source software licensed under the
terms of the GNU Public License (cf. http://wdok.cs.uni-magdeburg.de/software/).

http://wdok.cs.uni-magdeburg.de/software/


Fig. 1. A typical view of all material from a lecture (realized with ECLecture).

performance of all students of a class without the need for extra grading work. EC-
Quiz also offers tutor-graded extended text questions, so that selected-response and
constructed-response items can be mixed in a test to address different skills.

Another possible use of ECQuiz is for self tests with immediate feedback: In this
case, students immediately get an overall score, an overview of wrong and right answers
and possibly additional explanations, see figure 2. Since both the selection of questions
from a pool of questions and the selection of possible answers can be randomized, the
instructor may also allow that the test may be taken repeatedly.

2.3 ECAssignmentBox and ECAutoAssessmentBox

ECAssignmentBox supports creation, submission, and grading of essay-like assignments.
The assessment of essay-like student submissions offered by ECAssignmentBox is semi-
automated, meaning that the teacher does the assessing, but is aided by the tool during
the entire process of grading students’ work and giving feedback. ECAssignmentBox
leverages the workflow capabilities of Plone to define a specialized workflow for student
submissions. Modeling the grading process as a workflow structures it and makes it more
transparent, but, as in typical content management workflows, it also enables the division



1

2

3

Fig. 2. Example of the ECQuiz instant feedback option for self-assessment tests. Ê is
a correct answer, Ë is an incorrect answer with additional feedback provided by the
test author, and the arrow Ì indicates the correct answer that the candidate should have
selected.

of labor and online collaboration. For example, the detailed reviewing of submissions
may be assigned to teaching assistants, while the decision about the eventual grades can
be reserved to instructors.

ECAutoAssessmentBox is derived from ECAssignmentBox and was originally devel-
oped to allow students to submit their solutions for programming assignments via the
Web at any time during the submission period and get immediate feedback (see figure
3). Automatic testing and assessment of assignments is handled by a Web-based service
which manages a submission queue and several backends. Backends are also Web-based
services, which encapsulate the testing functions for a specific type of assignments.

The exact testing strategy implemented by a backend depends on the application: For
example, when testing programming assignments, the output of a student solution can
be compared to that of a model solution for a set of test data, or the assignment can be
tested for properties which must be fulfilled by correct programs. Currently implemented
are backends for Haskell, Scheme, Erlang, Prolog, Python, and Java. However, with the
appropriate backends, the system can also be used to test submissions in other formal



notations or to analyze natural-language assignments (we have already experimented
with style checking and keyword spotting [6]).

2

1

3

Fig. 3. The view a student gets after the automatic testing of a programming assignment
with ECAutoAssessmentBox. Ê is the assignment; Ë is the student’s submitted program,
in this case an incorrect solution; Ì is the automatic feedback, reporting an error, since
the submitted solution does not yield the expected results.

Both ECAssignmentBox and ECAutoAssessmentBox objects represent single assign-
ments. Online exercise sheets are simply created by placing the desired assignments
in a special folder, which handles the presentation and provides statistics and analysis
features for the student submissions for the contained assignments.

3 Employing eduComponents for Hybrid Learning

In Magdeburg, we are using the eduComponents modules (cf. section 2) as part of a
hybrid learning strategy which consists of lectures, electronic exercise work and exercise
groups as regular classroom sessions.



We are actively using eduComponents in all our lectures since several semesters.
This includes advanced lectures in programming like “AI programming and knowledge
representation” or “Functional programming: advanced topics” as well as lectures like
“Natural language systems”, “Document processing”, or “Information extraction”. In the
latter student assignments deal with formal systems and formalisms beyond traditional
programming, e.g., XSLT 3 in “Document processing” and regular expressions or UIMA
annotators 4 in ’“Information extraction”.

The most recent and broad scale usage in programming was summer semester 2007
in a lecture called “Programming paradigms” with 2 hours lecture and 2 hours exercise
per week. This course is obligatory for all CS bachelor students in their second semester.
These students have already a background in Java programming from their introductory
courses in the first semester and have thus been exposed to the imperative and the object
oriented paradigm. Therefore “Programming paradigms” concentrates on complementing
the students’ perspective with functional programming (using Haskell, Scheme, and
CommonLisp) and logic programming (using Prolog). It is essential that the students
deepen their understanding by solving programming tasks in the different representatives
of declarative languages. This can only be achieved when exercises and practice are very
intensive. We therefore demand that students submit weekly programming assignment
several hours prior to the weekly group meeting and get them checked and—hopefully—
accepted by ECAutoAssessmentBox. This may involve a number of error corrections
and re-submissions.

A group comprises approx. 15 to 20 students and is headed by an assistant as tutor.
The tutor of the exercises—this is either an assistant or an advanced student—has prior
access to all submissions. He can thus preview all submissions of his group members
and look for recurring problems or alternative and outstanding solutions. This allows to
better prepare the face-to-face group meetings. The tutor can now decide much better
in advance how much time needs to be allocated for what tasks because he can judge
the students’ performance and their potential problems from the inspection of submitted
solutions and solution attempts. During and after the group session all these documents
are available online.

Students have to present their solutions as before, but during the classroom session,
the assignments and the presented solutions are projected for all to see. This removes
the need to copy solutions to and from the blackboard. The selected students have to
comment on their solutions. If the solution and the presentation have been satisfactory, the
submission gets moved to the corresponding workflow state (e.g., accepted or graded).

4 Experiences and Lessons Learned

We started to develop and exploit eduComponents as basis for our hybrid learning envi-
ronment in winter semester 2003/2004. Since then we have been gathering experiences
with this approach in all our lectures. During the last two semesters, automatic testing
of programming assignments (using ECAutoAssessmentBox and backends for Haskell,

3 http://www.w3.org/Style/XSL/
4 http://incubator.apache.org/uima/



Scheme, and Prolog) was actively used by a total of over 140 students. This resulted in
almost 12.000 automatically tested submissions for about 200 assignments.

In the following we will discuss experiences with the hybrid learning arrangement:

– effects on students,
– effects on teachers,
– feedback from students,
– analysis of learning outcomes,
– stipulation of pedagogical experimentation.

4.1 Effects on Students

For programming assignments with automatic testing the demands for students’ solutions
are much more explicit and rigid with respect to correctness and quality. Students thus
also have to ensure that their solution is working correctly. Consequently the intensity of
work needed for the exercises has effectively increased.

On the other hand, students can gain access to a larger number of alternative solutions
and to typical error cases. Students also reported that they feel much more motivated,
since they get immediate feedback for their solutions. The motivation is also due to the
fact that students know that their submissions are actually reviewed, while previously
only a small number of solutions could be discussed. Maybe these advantages have
compensated for the higher requirements.

Student behavior during classroom sessions has also changed: Many students no
longer carry written notes to the classroom session, since they know that their submis-
sions are available online. Some students were even tempted not to come at all to the
group sessions if their submissions had passed the automatic tests. Our policy in this
respect is that personal attendance and active participation in the discussion among peers
is obligatory.

A very positive development is that many more students than before speak up in the
groups and want to show and discuss their solution if it is different from other presented
solutions.

4.2 Effects on Teachers

For teachers using automatic testing of programs, the most significant effect is that the
effort for initially designing assignments has increased. This is an insight that other users
of automated program testing systems have also reported (e.g., [7]). Automatic testing
requires problems and tasks to be formulated much more formally and precisely. This is
necessary to enable automatic testing and in order to avoid misunderstandings which
could result in students trying to solve a different problem than the one the teacher had
in mind and then getting puzzled about the reactions of the automatic testing system.

When they employ eduComponents, teachers are sometimes surprised by unexpected
or unintended usage of the system by the students. The latter may demand for policy
decisions.



Unexpected usage: ECAssignmentBox has been designed and implemented as lightweight
solution. It was intended to support either direct typing of (short) answers or uploading
of assignments (programs, texts) from a file; but it intentionally do not offer any sophis-
ticated editor functionality. Nevertheless there were unanticipated usages of the system.
Some students used it not only for the submission of their final solution, but also as a kind
of “ubiquitous work place” to work on essay-like assignments: They started to work on
an assignment from one computer, used the submission feature to store an intermediate
version, and later continued to work on the same assignment from a different computer.
This resulted in a large number of spurious superseded submissions.

Unintended usage: Other students abused ECAutoAssessmentBox as a Web-based
interpreter to solve programming assignments. This was clearly unintended in our design.
We therefore introduced a parameter for teachers to restrict the number of possible re-
submissions for automatically tested programming assignments. We currently use a limit
of three trials. Limiting the misuse of ECAutoAssessmentBox as a trial-and-error device
by setting a limit on repeated submissions also enforces a secondary learning objective:
We expect that our students are able to use the native programming environments and
interpreters for the various programming languages and to leverage them instead of
submitting untested sketches of a solution.

4.3 Feedback from Students

At the end of each semester we ask our students to complete a questionnaire on their
experience with the learning environment. The questions cover three areas: The use
of electronic submissions in general, their effect on the students’ working habits, and
the usability of eduComponents. The results—based on feedback from up to now more
than 200 students—in all three areas are consistently very positive. Students especially
value the reporting and statistics features, which help them to track their learning prog-
ress, again resulting in better motivation. Furthermore students find it helpful that their
assignments are stored centrally, and can quickly be accessed for discussion in the course.
Students also report that they work more diligently on their assignments because the
teachers can now access and review all assignments.

A seemingly minor change in the organization and technical basis of exercises—i.e.,
introducing that all assignments and all solutions of students are electronic documents in
a content management system—resulted in significant changes in the learning environ-
ment and changed learning processes much more fundamentally than expected in the
beginning of the transition to the new system. When we started using CAA and other
e-learning components we had the primary motivation to relief teachers and students
from administrative burdens by automating certain processes and supporting others. Our
experience is, however, that the change in the way how assignments are submitted has
lead to many other changes in our courses because of the new possibilities offered by
the system. But the new opportunities also pose new demands for both teachers and
students.

Although the workload for students has increased there is a broad acceptance of
the new system and students would welcome its use in other lectures as well. We
interpret this as a positive reaction on the new opportunities and as an indication that



students accept the higher intensity of their own engagement because they experience
and appreciate an improved return on investment for their learning outcomes.

4.4 Analysis of Learning Outcomes

On the other hand an in depth analysis of recent examination results (lecture on “Program-
ming paradigms” from Summer 2007 with first exam in September 2007 and repetition
exam in February 2008; N = 55 students) and the recorded data from the respective
exercise groups (e.g., final number of accepted solutions, number of presentations of
solutions in the group) reveals that not all students make already the intended use of
the offered opportunities for self study. In this analysis we distinguished “minimalist”
students from “overperformers”. We counted those students as minimalists that achieved
just those numbers that were obligatory as prerequisite for access to the final exam (a
two hour written exam with tasks similar to those from the exercises). Overperformers
in contrast have submitted solutions to all or almost all assignments and additionally
were much more active in the exercise groups. Whereas all overperformers from the
exercise groups—except one, but he got a “very good” as score in the repetition of the
exam—excelled their peers with very good or at least good results in the exam, many of
the minimalists showed only poor performance or failed, some even twice (i.e., as well
in the repetition exam), and no minimalist excelled positively.

4.5 Pedagogical Innovation

There is another effect of our hybrid learning environment: The availability of eduCom-
ponents and the relative ease of extending them with new functionality stipulate peda-
gogical experimentation. The recent development and first employment of the so called
ECReviewBox is a point in case.

Computer science students need not only be able to write programs themselves,
they must as well be able to understand and evaluate programs written by others. This
is, by the way, an excellent example from CS education for the cognitive learning
objective of “evaluation” in Bloom’s taxonomy [8]. ECReviewBox is a new module of
eduComponents that to a large extent automates a peer review process of student solutions
to assignments (cf. fig. 4). We have employed this new functionality for several more
complex programming assignments for the first time in summer 2007. First, students
have been asked to supply their solutions to the programming task. In the subsequent
week, all submitters were eligible for acting as anonymous reviewer and commenter
on the anonymized submission of some randomly selected other student. Finally the
reviews were made available as feedback to the original authors. Please note that such a
type of assignment would hardly be possible in a traditional paper-based environment.

5 Summary and Prospect

Since we started with the hybrid learning environment based on combining classroom
lectures and exercises with e-learning and especially computer-aided assessment our
teaching has changed significantly.



Fig. 4. Review of an assignment using ECReviewBox (student view; simple Java program
for illustration purpose).

This starts already when preparing a lecture. When the content is selected and the
slides and/or notes are prepared we habitually devise both an accompanying multiple
choice questionnaire as well as the assignments for the weekly exercise group. Of course
we now do no longer have to create all of this from scratch because we can choose from
the repository of former tests and assignments.

The following point illustrates, in our opinion, in a nearly prototypical way the
interrelation of pedagogical concerns and policy issues. In summer 2007 we had—as
we usually do up to now—demanded that at least 66 percent of the assignments were
successfully solved (i.e., accepted by the automatic checking module prior to the exercise
groups). We have at several occasions tried to convince our students with arguments that
plagiarism is counterproductive and in the long run destructive for themselves. On the
other hand we decisively did not regularly check students’ submissions for suspected
plagiarism (also technically possible within limits), because we did not want to start an
“arms race” between plagiarism hiding and plagiarism detection. We now think about a
change in policy for future semesters. We will experiment with a combination of relaxing
the demands on the one hand (i.e., we will only demand that solutions to a minimum
number of assignments have been seriously attempted, but they need not necessarily be
fully correct and automatically accepted) and on the other hand making use of regular
plagiarism detection and rejection of submissions classified as plagiarized. We hope that
this change of policy supports the motivating pedagogical concern: Students shall learn



through problem solving on their own not through copying and—hopefully at best—only
understanding the solutions of others.

Another policy change that we are planning is to introduce “spontaneous” tasks into
the group exercises, i.e., within each group session of 90 minutes a slot of approx. 15
minutes will in the future be allocated for working on problems that are handed to the
students within the session. This seems to be both necessary and feasible in the light
of our experiences with the hybrid approach of combining e-learning and CAA with a
traditional classroom based learning environment.

Acknowledgement

A number of colleagues and students have contributed to the design, implementation and
deployment for successful every day usage of the eduComponents. We have to thank our
former colleague M. Piotrowski for inspiring discussions and his contributions to the
system, our students W. Fenske and S. Peilicke for their substantial implementations and
our colleagues I. Blümel, M. Gnjatovic and M. Kunze for their valuable feedback from
their experience in teaching with eduComponents.

References

1. Amelung, M., Piotrowski, M., Rösner, D.: EduComponents: Experiences in e-assessment
in computer science education. In: ITiCSE ’06: Proceedings of the 11th annual conference
on Innovation and technology in computer science education, New York, ACM Press (2006)
88–92

2. Rösner, D., Piotrowski, M., Amelung, M.: A Sustainable Learning Environment based on an
Open Source Content Management System. In Bühler, W., ed.: Proceedings of the German
e-Science Conference (GES 2007), Max-Planck-Gesellschaft (2007)

3. Amelung, M., Piotrowski, M., Rösner, D.: eduComponents: A Component-Based E-Learning
Environment. In: ITiCSE ’07: Proceedings of the 12th annual SIGCSE conference on Innova-
tion and technology in computer science education, New York, NY, USA, ACM Press (2007)
352–352 ISBN:978-1-59593-610-3.

4. Amelung, M., Piotrowski, M., Rösner, D.: Webbasierte Dienste für das E-Assessment. In
Koschke, R., Herzog, O., Rödiger, K.H., Ronthaler, M., eds.: Informatik 2007 - Informatik
trifft Logistik. Beträge der 37. Jahrestagung der Gesellschaft für Informatik e.V. (GI). Lecture
Notes in Informatics, Bonn, GI-Verlag (2007) 518–522 ISBN:978-3-88579-203-1.

5. Piotrowski, M., Rösner, D.: Integration von E-Assessment und Content-Management. In
Haake, J.M., Lucke, U., Tavangarian, D., eds.: DeLFI2005: 3. Deutsche e-Learning Fachtagung
Informatik der Gesellschaft für Informatik e.V. Volume P-66 of Lecture Notes in Informatics
(LNI)., Bonn, GI-Verlag (2005) 129–140

6. Feustel, T.: Analyse von Texteingaben in einem CAA-Werkzeug zur elektronischen Einreichung
und Auswertung von Aufgaben. Master’s thesis, Fakultät für Informatik, Otto-von-Guericke-
Universität, Magdeburg (2006)

7. Zeller, A.: Making students read and review code. In: ITiCSE ’00: Proceedings of the
5th annual SIGCSE/SIGCUE ITiCSE conference on Innovation and technology in computer
science education, New York, NY, USA, ACM Press (July 2000) 89–92

8. Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., Krathwohl: Taxonomy Of Educational
Objectives: Handbook 1, The Cognitive Domain. Allyn & Bacon, Boston (1956)




