

Designing an Automatic Debugging Assistant for
Improving the Learning of Computer Programming1

Maria S. W. Lam*, Eric Y. K. Chan#, Victor C. S. Lee*, and Y. T. Yu*

Department of Computer Science, City University of Hong Kong
*{marialam, csvlee, csytyu}@cityu.edu.hk, #chanyk@cs.cityu.edu.hk

Abstract. Finding bugs in programs (debugging) is a core skill for practical
programmers. However, debugging programs can be difficult to novice
programmers. Even worse, repetitive failures may defeat students’ enthusiasm
for learning. The presence of a mentor giving hints and help face-to-face with
students will surely make such a learning process much more effective and
enjoyable. However, this requires lots of manpower and resources. To
address this problem, we seek to capitalize on the potential advantages offered
by hybrid learning. We are working towards a system for providing a certain
level of automatic debugging assistance to students. Instructors can identify
common errors in students’ programs using the system and incorporate useful
debug-guiding information into it so that students will be prompted with
pertinent hints when common errors are detected in their programs.

Keywords: automatic debugging assistant, computer programming, PASS, test
cases and annotations.

1 Introduction

Finding bugs in programs (debugging) is a core skill for practical programmers.
However, debugging programs can be difficult to novice programmers. Even worse,
repetitive failures may defeat students’ enthusiasm for learning. The presence of a
mentor giving hints and help face-to-face with students will make such a learning
process much more effective and enjoyable. However, this requires lots of
manpower and resources. To address this problem, we seek to capitalize on the
potential advantages offered by hybrid learning (also called blended learning) [1],
whereby students’ learning experience through their face-to-face interaction with
instructors and tutors is supplemented and enriched by the use of e-learning systems.

We are working towards an Automatic Debugging Assistant (ADA) which aims at
providing a certain level of automatic debugging assistance to students. Instructors
can identify common errors in students’ programs using ADA and incorporate useful
debug-guiding information into it so that students will be prompted with pertinent
hints by ADA when common errors are detected in their programs.

1 This work is partially supported by a Teaching Development Grant (project no. 6000145)

from City University of Hong Kong. Corresponding author: Victor C. S. Lee.

ADA is designed to be an extension of an existing Programming Assignment
aSsessment System (PASS) developed at our university for improving the teaching
and learning of computer programming [2]. Since 2004, PASS has been used in
many computer programming courses to automate the programming assignment
submission and grading process [3-5]. Through PASS, the instructor may upload the
assignment and practice problems with some preset public test cases for students to
obtain the problem specification and test their programs online. Students can submit
their programs to PASS for assessment before the submission deadline specified by
the instructor. Afterwards, upon the instructor’s request, PASS can automatically
produce the results of assessment of the students’ programs [5]. Then students can
read their grades, together with the feedback manually added by the tutor.

The sections that follow in this paper will explain the advantages and challenges of
providing automatic debugging assistance for students. Then we discuss some
relevant attributes of a test case, which is the core data entity of the automatic
debugging assistant, and describe the design framework of the system. These are
followed by a case study, some observations arising from it, and finally, some
concluding remarks.

2 Problems in Manual Debugging

Solving problems by constructing correct computer programs is an iterative process.
It is common to take more than a few iterations to debug and test programs before a
correct version can be produced. However, debugging programs can be difficult,
time-consuming, and prone to human errors. More bugs may be inadvertently
introduced while revising the program if the original bugs cannot be correctly located
and fixed during debugging.

There are many integrated development environments (IDEs) which provide
facilities to computer programmers for software development. An IDE normally
consists of a source code editor, a compiler and/or interpreter, build automation tools,
and (usually) a debugger. They are designed to maximize programmer productivity
by providing a user-friendly integrated environment with different components for
users to edit, compile, build (create the executable program) and debug their programs.
For debugging, the IDEs mainly help the programmers in removing the typing or
syntax errors in the source code. However, the most difficult step in debugging is to
find the logical software bugs which prevent the computer program from behaving as
intended. Conventionally, the capability for detecting and fixing logical bugs
depends heavily on the student’s own experience, logical thinking ability and
programming skills.

Practice is a major learning activity to gain experience and develop good
programming skills. So, it is very important to arouse students’ interest in doing
more practice in a computer programming course. However, students nowadays will
easily lose motivation and interest in program debugging, especially when they do not
know if they are working in a right direction. An automatic debugging assistant,
whose design is presented in the next section, will probably help motivate students to
maintain the momentum of the search for a solution to their programming tasks.

3 Design of the Automatic Debugging Assistant

3.1 Attributes of a Test Case

A set of carefully designed test cases not only helps students partially verify the
correctness of their programs, but also helps them identify possible semantic errors by
comparing the program outputs with the expected ones. In addition, in case of
wrong program outputs, meaningful annotation describing each test run can help
students figure out the source of errors more efficiently. In a testing and debugging
process, test case is a core data entity. We first discuss some relevant attributes of a
test case.

Level of Difficulty. PASS allows the instructor to prescribe programming exercises
and inform the students of the level of difficulty of each exercise. To extend this
concept, the difficulty of developing a solution to the same programming exercise can
vary substantially by prescribing different test cases that the student’s program is
required to pass. Thus, instructors can design and classify the test cases into
different levels of difficulty so that students can construct their programs
progressively and incrementally, and test their programs at each stage of development
[4]. Moreover, students can easily learn that they are working in a right direction
and get a sense of satisfaction when their programs can at least pass the test cases at a
lower level of difficulty. This motivates them to put more effort to get their
programs pass all the test cases at the higher levels of difficulty.

Visibility. Instructors can specify whether a test case is open/public or
hidden/private [5]. For instance, in PASS, test cases for practice problems can be
open for students (that is, all students know exactly what these test cases are) to check
the correctness of their programs, while for assessment problems, like assignments or
online quizzes, instructors can hide all or some of the test cases for the purpose of
grading [2]. In another programming submission and testing system called
Marmoset, Spacco et al. [6] further divide test cases into four visibility levels to serve
different purposes, namely, student tests (those written by students), public tests
(provided to students), release tests (selectively made available to students) and secret
tests (not disclosed to students until after the submission deadline).

Inputs. Inputs are values to be fed into a student’s program during execution.
Depending on the problem specification, instructors may ask students to write
programs which accept a single input, a specified number of inputs or an unlimited
number of inputs until a specific value is entered or a specific key is hit. Also,
whether any pre-processed input validation is required depends on the learning
objectives of the problem. It is crucial to design a wide diversity of test inputs to
cover most, if not all, possibilities to test the target program comprehensively. On
the other hand, redundant test inputs that hint at the same bug may be eliminated to

avoid a waste of debugging time. Nevertheless, it should be borne in mind that a
program passing all the test cases can still be incorrect [2].

Expected Outputs. To check the correctness of students’ programs, each test case
is associated with a corresponding expected output. In this respect, PASS can be
configured to display messages with varying amount of details. One option is to
simply tell whether student’s program output matches the expected output or not.
Another option is to compare student’s program output with the expected one and
highlight their differences to provide more hints for students to figure out the possible
source of errors [4].

Common Wrong Outputs with Annotations. Although there can be many
different wrong outputs produced by different incorrect programs when they are
executed with the same test case, some wrong outputs caused by typical program bugs
usually appear more frequently than those caused by less common bugs. Our aim is
to provide help to students who commit the common mistakes, as such help will have
greater chances of benefiting more students.

In a recent study, Jadud [7] explored the behaviour of first-year university students
who were learning to program in Java, and came up with a list of the most common
errors they encountered related to the compilation of their programs. The list
includes unknown variable, missing or misplacement of semicolon, incorrect
matching of brackets, unknown method, and others. In another study, Morimoto et al.
[8] developed a system, called TeCProg (which is a support system for Teaching
Computer Programming), that analyzes the trend of past compilation errors to
facilitate teachers to understand the common mistakes made by students in their
programming work. In our work, we are more interested in detecting the logical errors
made by students. To identify these errors, we examined a sample of incorrect
programs submitted by students in their first programming course. Based on these
sample programs, we prepared some annotations as debugging hints specifically for
each of the bugs. Table 1 shows some typical program bugs that result in common
wrong outputs and the corresponding debug-guiding annotations. Given the bug
types, specific annotation for each test case can be entered manually by instructors or
retrieved automatically from a repository. In the latter case, instructors can, if
desired, further refine the retrieved annotations to provide more concrete hints to
students to help them debug their programs.

General Annotation for Uncommon Wrong Outputs. It is impractical to capture
all possible wrong outputs produced by incorrect programs when they are executed
with a particular test case, as these programs can be written in myriads of ways.
Besides the common wrong outputs, other wrong outputs or unexpected behaviour
can be produced by an erroneous program, such as the lack of output, timeout,
deadlock, or memory/resource leakage. These errors can only be identified by
examining the program code line by line. In this case, the annotation may simply
document the purpose of the test case as a hint for students to dig into the cause of
bugs by themselves.

Table 1. Some typical program bugs

Type Description Annotation

Declaration A declaration specifies the interpretation and
attributes of a set of identifiers, which are used
to define data types and initial values for
variables, functions or constants in the source
code. Many errors are caused by incorrect
declaration statements.

Example. Using an integer-type variable to
store a real number may induce mathematical
errors. Say, when the number 1.99 is stored
as an integer, its value may be mistaken as 1.

Verify that the variables,
functions and constants
are correctly defined and
initialized with
appropriate data types and
values.

Operator /
Specifier
Symbol

Many errors occur when the operators /
specifier symbols are wrongly used.

Verify the use of
operators / specifier
symbols.

Boundary Many errors occur when the input values are at
the border of different parts of the input
domain.

Verify or add codes to
handle inputs at the
border of different parts
of the input domain.

Conditional
Statement
(if-then-
else)

A conditional statement performs different
computations or actions depending on whether
its condition evaluates to true or false.

Verify the conditions in
conditional statements.

Iteration Errors commonly occur in loop constructs. In
particular, failing to test the loop termination
condition correctly may lead to an infinite loop
or an incorrect number of iterations.

Verify the loop
termination conditions.

Arithmetic
Rounding

Rounding error is the difference between the
calculated approximation of a number and its
exact mathematical value.

Example. To calculate (1/3 + 1/3) to 2
decimal places, if the value 1/3 is rounded to
0.33 before addition, the result will be 0.66.
Otherwise, if rounding is done after addition,
the result will be 0.67.

Verify the mathematical
equations or calculations
to avoid errors due to
rounding.

Output
Format

Incorrect formatting of the output, such as
incorrect number of decimal places, wrong
spelling of words, or occurrence of a redundant
punctuation mark.

Verify that the format and
wording of the program
output conform exactly to
the requirements stated in
the program specification.

Exceptional
/ Abnormal

Some errors may occur when the program fails
to handle gracefully the abnormal values, such
as zero or negative values.

Verify or add exception
value handling code, if
applicable.

3.2 Design Framework of ADA

ADA is designed for use in the following way. Students submit their programs to
PASS for testing. If a submission passes all the open test cases, PASS will prompt a
successful execution message. Otherwise, ADA will provide the test case
annotations together with a failure message. These annotations are either manually
pre-set or derived from past submissions. Meanwhile, the current submissions,
together with their wrong program outputs, will be recorded and subsequently become
instances of past submissions for future annotation enhancement. In addition,
submission statistics such as the number of attempts before successful execution will
be recorded for analyzing the performance of students, the common mistakes
committed by students, the level of difficulty of the problem or its associated test
cases, and so on.

The design framework of ADA is shown in Fig. 1. It consists of six modules:
Test Case Editor / Upload, Result Processor, Submission Statistics Collector,
Submission History Accumulator, Submission Post-processor and Annotation
Repository. The modules are briefly described as follows.

Test Case Editor / Upload Module. This module provides an interface for instructors
to edit or upload test cases in a predefined format.

Result Processor Module. This module compares student’s program outputs against
expected outputs. For each correct program output, a successful execution message
will be displayed. Otherwise, a failure message and an annotation for each wrong
output will be provided. Depending on the preference of instructors, the expected
outputs can be shown with the differences highlighted to provide more hints for
students to revise their programs.

Submission Statistics Collector Module. Students are allowed to attempt and submit
programs for testing any number of times before a given deadline. This module
collects submission statistics such as the number of attempts before successful
execution and the mean time between submissions. It also provides functions for
instructors to organize and analyze the statistics for system performance evaluation.

Submission History Accumulator Module. All information in each submission,
including the test cases, student programs and their outputs, will be recorded by this
module for subsequent processing to identify typical bugs and derive respective
annotations.

Submission Post-processor Module. This module analyzes the historical submission
records and extracts useful knowledge or rules by artificial intelligence or data mining
techniques to identify typical program bugs and derive respective specific annotations.
It is a recursive process. The number of submission records will grow with time and

more information can be used to refine the rules and enhance the quality of
annotations or even track the trend of typical program bugs.

Annotation Repository Module. This module stores the typical program bugs and the
associated specific annotations derived by the Submission Post-processor Module.
This information can be accessed by the Result Processor Module to retrieve a
particular specific annotation given a bug type.

Programming Assignment aSsessment System (PASS)

Annotation
Repository

Submission
Post-

processorResult Processor

Submission Statistics
Collector

Submission
History

Accumulator

Automatic Debugging Assistant (ADA)

Program
execution

Student submissions

Historical
records

Automatic process Semi-automatic process

Test Case Editor /
Upload

Programming Assignment aSsessment System (PASS)

Annotation
Repository

Submission
Post-

processorResult Processor

Submission Statistics
Collector

Submission
History

Accumulator

Automatic Debugging Assistant (ADA)

Program
execution

Student submissions

Historical
records

Automatic process Semi-automatic process

Test Case Editor /
Upload

Fig. 1. Design Framework for Automatic Debugging Assistant

4 Case Study

To demonstrate the effectiveness of the output-specific annotation about helping
students to find out the bugs of an incorrect program, a case study has been
undertaken. In the rest of this section, the specification of the selected problems in a
programming course are given first, followed by the creation of test cases and their
annotations for the problems, and finally some observations and discussions.

4.1 Selected Programming Problems

We selected a foundation C programming course for the case study. Most students
in this course are new to programming. In the course, students need to learn the
basics of C programming, including data declaration, use of operators, as well as
conditional statements and loops. During the learning process, they often feel
frustrated to tackle the semantic errors in their programs, the issue which we are
trying to address.

From the course’s historical records in PASS, we selected the following three
problems for detailed study, based on their complexity as well as their expected
outputs’ characteristics. Problems with too simple output(s), say, output values that
are “Yes or No” or “True or False”, are not selected. Problems with historically the
highest attempt rate and failure rate from the remaining ones are selected. Thus, we
selected firstly, the problems that contain various patterns of outputs, and secondly,
the problems which expose the difficulties encountered by most students in their
learning.

Problem 1: Use of output formatter

Write a C program, bmi.c, to get the weight (in kilograms) and height (in meters) of
a person. Then calculate and print the Body Mass Index (BMI) in 2 decimal places
according to the formula: BMI = weight / (height * height).

A sample output of the program follows, showing in what way the program is
expected to interact with the user. In presenting these sample outputs, we shall
adopt the convention that all input values to the program are underlined.

Enter your height in m: 1.8

Enter your weight in kg: 60

Your BMI is 18.52

Problem 2: Use of mathematical operators

Write a C program, convertTime.c, that reads the number of seconds and
converts it to hours, minutes and seconds. A sample output of the program follows.

Please enter the number of seconds: 5000

5000 second(s) = 1 hour(s) 23 minute(s) 20 second(s)

Problem 3: Use of loop

Write a C program, factor.c, that reads a positive integer n and outputs all its
factors k, where 1 < k ≤ n – 1. A sample output of the program follows.

12

2 3 4 6

Below is another sample output of the program. Note that since the integer 7 has

no factors other than 1 and itself, the program should produce no output.

7

4.2 Test Case and Annotation Creation

Because a variety of programming styles may be used by different students, it would
be difficult to design test cases based on their program source code. Therefore, test
cases for each problem are designed by considering the input and output domains.
Since input validation is not required in these problems, invalid inputs are omitted.
Test cases and their corresponding annotations are created based on Table 1.

One class of typical test cases consists of exceptional cases to determine whether
the programs can handle unusual values. For instance, if the input value of weight in
Problem 1 is assigned to zero, the output BMI should be 0.00 (except when zero is
assigned to the variable height). This test case can verify the correct substitution of
the numerator and denominator. Stack overflow will occur if the program wrongly
swapped the two variables. Similarly, if a program for Problem 3 did not treat zero
as a special case before executing the while loop, the program may not terminate.

Another class of typical test cases consists of boundary test cases, where the input
value(s) is (are) at the border of different parts of the input domain, such as an input
of 60 or 3600 seconds, or inputs at the transition of seconds to minute or minutes to
hour conversion in Problem 2. If the mathematical operators, such as division ‘/’
and modulo ‘%’ operators, have been wrongly used, the resulting number of seconds
or minutes can become equal to or greater than 60, which is anomalous.

Normal test cases are used to determine whether the programs perform the normal
computations correctly. Although a variety of outputs can result when the logic of
the program is wrong, some specific errors will trigger certain definite wrong outputs.
For instance, some students wrongly used an integer variable to store the input value
of weight and a non-integer variable to store the input value of height, or vice versa.

There are two types of annotation which may provide assistance to students:
output-specific annotations and general annotations. The creation of output-specific
annotations is based on analyzing the wrong output corresponding to the test case. If
the wrong output can be classified as a common wrong output, an appropriate
message will serve as debug-guiding annotation to hint where the source code may
get wrong. For instance, “check the correct position of the numerator and
denominator” message is a specific annotation for the “stack overflow” exception
output in Problem 1. For outputs that cannot be classified as common wrong outputs,
stating the objective of the given test case will assist students to debug their programs.
The general annotations are independent of the actual output produced by the
student’s program. For instance, one example of general annotation for Problem 3
can be “This input does not have any factor”. The student may follow this reasoning
to check why his/her code produces any output at all.

4.3 Observations

Fig. 2 to 5 show, respectively, some sample output messages for the chosen problems.
The columns of each message include the serial number of the test case, the inputs,
annotation, actual output and result. For simplicity, the expected output is omitted.

 Fig. 2 shows the result of an erroneous program when 1.01 is input as the value
for height and 62.99 as the value for weight, respectively, in Problem 1. Here, the
program fails because the data type of the variable weight was wrongly declared as
int (an integer variable), instead of float (a floating point variable) as stated in the
annotation. Students can then check the code in the data declaration parts to debug
their programs.

Fig. 3 shows an error case for Problem 2, in which the program fails to convert 60
minutes to 1 hour. Corresponding to such an output, ADA will produce a specific
annotation “1 minute instead of 60 seconds and 1 hour instead of 60 minutes” to
remind students to check the conversion formula.

 Fig. 4 shows a “Time limit expired” error for Problem 3 caused by infinite loop
when the input value is zero. The annotation “Check input 0 causes infinite loop”
suggests the student to review the looping condition. With the hint of annotation,
the student should be able to consider zero as one of the cases to terminate the while
loop in his/her program.

 Fig. 5 shows another programming error for Problem 3. The problem requires
the program to output all factors of an integer except 1 and the integer itself.
However, the input value itself is also printed in the output list. The specific
annotation “No need to check equal to input in while loop condition” hints that the
termination condition of the while loop is wrong.

4.4 Discussion

It is difficult to trace a semantic error in computer programs even for an experienced
programmer. There is no debugger which is intelligent enough to tell the
programmer why the program output is wrong. It would be hard to guess how to
trace such an error as the program code listing grows longer and longer. ADA
utilizes historical data to generate useful annotations for different kinds of common
logical errors. It definitely is not intended to be fully automated. However, with
the help of annotations as debugging hints, students can locate the bugs more
effectively if such bugs have been committed by students in the past.

Our initial experience in the case study suggests that, with the assistance of test
case annotations to serve as debug-guiding information, students can more precisely
identify the location of bugs in their programs so that they do not need to rewrite the
whole program again and again. Conversely, without the assistance of annotations,
students may as well attempt to rewrite the programs and subsequently other new
bugs may be introduced, making the problem even harder to solve. Worse still,
students may eventually be fed up with frustration and abort their attempts.

Fig. 2. ADA prompts declaration error with annotation (Problem 1)

Fig. 3. ADA prompts boundary value error with annotation (Problem 2)

Fig. 4. ADA prompts exceptional case error with annotation (Problem 3)

Fig. 5. ADA prompts loop condition error with annotation (Problem 3)

5 Conclusion

This paper has described the design of ADA, an automatic debugging assistant that is
an extension of PASS, a Web-based automatic programming assignment assessment
system. Students can use PASS to test and verify their programming assignments
online. The newly extended debugging assistant, ADA, aims to further relieve the
workload of tutors in guiding students to find bugs in their program code. ADA is not
intended to be intelligent enough to understand programs. Rather, it provides a
platform for tutors to consolidate the causes of common programming errors and
transform such information into helpful hints. This kind of automatic debugging
assistance is expected to supplement our daily face-to-face teaching, hence realizing
the potential benefits of hybrid learning in computer programming courses.

Enhanced by ADA, PASS will enable the instructor to return instant debug-guiding
information to students. Initial responses from the users in our pilot case study are
encouraging, and further work is underway to perform a systematic evaluation of the
effectiveness of such a feedback mechanism and the debug-guiding information.

References

1. Graham, C.R., Allen, S., Ure, D.: Benefits and Challenges of Blended Learning
Environments. In: Khosrow-Pour, M. (ed.) Encyclopedia of Information Science and
Technology, pp. 253--259. Hershey, PA: Idea Group (2005)

2. Yu, Y.T., Poon, C.K., Choy, M.: Experiences with PASS: Developing and Using a
Programming Assignment aSsessment System. In: 6th International Conference on Quality
Software (QSIC 2006), pp. 360—365. IEEE Computer Society Press (2006)

3. Chong, S.L., Choy, M.: Towards a Progressive Learning Environment for Programming
Courses. In: Cheung, R., Lau, R., Li, Q. (eds.) New Horizon in Web-based Learning:
Proceedings of the 3rd International Conference on Web-based Learning (ICWL 2004), pp.
200--205, World Scientific Publishing Co. Pte. Ltd (2004)

4. Choy, M., Lam, S., Poon, C.K., Wang, F.L., Yu, Y.T., Yuen, L.: Towards Blended Learning
of Computer Programming Supported by an Automated System. In: Workshop on Blended
Learning 2007, pp. 9--18, Prentice Hall (2007).

5. Choy, M., Nazir, U., Poon, C.K., Yu, Y.T.: Experiences in Using an Automated System for
Improving Students’ Learning of Computer Programming. In: 4th International
Conference on Web-based Learning (ICWL 2005), LNCS, vol. 3583, pp. 267--272, Springer
(2005)

6. Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth, J.K., Padua-Perez, N.:
Experiences with Marmoset: Designing and Using an Advanced Submission and Testing
System for Programming Courses. In: 11th Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE’06), pp. 13--17, ACM Press (2006)

7. Jadud, M.C.: Methods and Tools for Exploring Novice Compilation Behaviour. In: 2nd
International Computing Education Research Workshop (ICER’06), pp. 73--84, ACM Press
(2006)

8. Morimoto, Y., Kurasawa, K., Yokoyama, S., Ueno, M., Miyadera Y.: A Support System for
Teaching Computer Programming based on the Analysis of Compilation Errors. In: 6th
International Conference on Advanced Learning Technologies (ICALT’06), pages 103--105,
IEEE Computer Society Press (2006)

