Just-in-time Knowledge for Effective Hybrid Learning

Michel C. Desmarais

Computer and Software Engineering Department
Polytechnique Montr”eal
michel.desmarais@polymtl.ca

Abstract. The means for Hybrid learning take on many forms. In this paper, we
look at learning facilitators that can be embedded within the user interface. We
argue that these means of learning can be even more effective than formal
training. We describe different features of the user interface that can provide
just-in-time knowledge that fosters learning: immersing the student into a rich
environment where he can readily have access to the information for the task at
hand.

1 Introduction

The European Commission is devoting over 50M Euros annually in recent years to
fund projects that are aimed at developing new means of learning, and new means of
creating and managing digital content!. Few of the funded research, if any, aim to
develop technologies intended for the classroom. Instead, the emphasis is on
developing technologies to make the delivery of learning content more individualized,
interactive, and embedded into our everyday environment.

2 Learning occurs naturally, but it can use facilitators

Why would such means of learning have a great potential of being effective?

Looking at the learning phenomena in general, we know that most of what we
learn occurs outside of a structured context such as a classroom. Any researcher in
Artificial Intelligence can attest that most cognitive tasks that humans perform
involve a phenomenal amount of knowledge that was acquired throughout life. Much
of this knowledge has to do with problem solving skills and “common sense”
inference, which is mostly acquired in a semistructured or non structured
environment, through practice. This huge amount of knowledge is, needless to say,
not found in textbooks.

Language is a good example of our ability to learn in an unstructured context.
Learning a language starts with the imperative need to communicate, and with the

1 http://cordis.europa.eu/fp7/ict/telearn-digicult/telearn_en.html (last consulted on
2008.05.12)

environment in which that language is omnipresent. The combination of need plus
environment is sufficient to incur the learning of a complex skill.

Now, this is not to say that we should do away with structured learning and that
unstructured learning is the only and best way to learn a subject mater. The point is
that when we get the co-occurrence of the need to know something, or the need to
perform some task, and an environment that provides the elements to learn and
perform, then learning will naturally occur. What makes unstructured learning so
powerful, is that learners often have a constant need to know or to perform. It is up to
us to provide them with the proper environment that can foster that learning. The
constant availability of that environment and the prevalence of the need to know and
perform can far outweigh the time and the attention the learner can devote to learning
in a structured context, such as a classroom.

The question is, how can we best leverage over this type of learning in the context
of hybrid learning? A key factor is the constant progression, in recent decades, of the
computerization of our environment, and of our access to knowledge and information
that has dramatically increased. That opens an opportunity to enrich our environment
with the right features that can foster unstructured learning towards specific learning
objectives, and complement the more traditional structured learning. Learning through
our computerized environment is already well under way, and our purpose here is to
reflect on the most the most exiting developments.

3 Environments that Support Learning

Let us take that idea of fostering autonomous learning and look at the kinds of means
we deploy to enrich the learner’s environment towards that goal. We focus on the
transformation of standard user interfaces that were originally designed with the goal
of providing functionality, to interfaces that embed the goal of inducing the
learning of complex task.

We start with an example that we had the opportunity to work on, the THEO
Electronic Performance Support System (EPSS).

3.1 The THEO example

THEO is a system designed for the customer support centers at a large utility
company with millions of clients. The original interface is displayed in Figure 1.

The tasks that the user can perform with THEO are quite diversified and
sometimes non trivial, such as explaining how a fixed monthly payment is derived
from year to year, or making a diagnostic of a sudden increase of electricity
consumption in a household. As a consequence, the classroom training for a new
employee required three weeks.

In order to reduce the training period, we integrated a number of additions to the
original THEO interface that are meant to provide a kind of just-in-time training,
often referred to as an Electronic Performance Support System (EPSS) [1]. These
features are accessible from the original interface in Figure 1 and are not intended to
replace it. Their intent is to allow learning through the user interface.

Personnelle | Téléphonas |
MAS: 000 000 000
—Dernier contact
10 rue des Braves Ottawa, Ontario A1B 2C3 Actif
—Eilan: Versement-
e L e Base (hist) 156,00
rais admin: 3
Entrées div: = & réparti:
Sous-total: 164,63
Facture Dermier paiement Ajustement -
Sodenechu: Facturéle® 7 awr97 Payéle: 2T mars 97 Total 156,00
Solde total: 164,63 Echéance. 28 avr 97 Montant: 169,64
D1] Etat de compte [MVE |
Début responsabilité. 2 Juin 89 Adhésion: 12 nev 90
ﬁ Propriétaire responsable Facture no: 7
+Transactions
ipti Facture Paizment Solde Facture Solds 4 Salde PA:
Bm B Débe Crédit el MVE réguie MVE -
o7 04 97 164,53 156,00 156.00 - AL
b7 02 97 PAIE Pa, 189,64 164,53 0,00 Préparation: 21 avr 97
6 03 47 REV PER 35417 189,64 . .
6 03 97 354,17 189,654 189,64 Mortart 156,00
G 03 97 431,35 354 17 33,64 0,00
b7 02 97 PAIE PA 18964 7718 or 3364 000 - _Modalités |

Fig. 1. Orig

inal THEO interface

Le 8 septembre 1994

Objet © Mode de versements égau- révision annuelle
Madame, Monsieur, |RENE PELLETIER

Nous révisons actuellement le dossier de tous nos clients inscrits au mode de
versements égaux. Nous voulons nous assurer que vos mensualités reflétent
le plus exacternent possible la quantité d'électricité réellement consommeée.

Pour |a période se terminant le 06709194 , qui comprend 12 mois, le colit de
votre consommation réelle d'électricité s'éléve & ...

Les sommes qui wous ont &té facturées (y compris |a facture

de)

Lorsque la présente facture aura été payée, vous nous dewrez done

Wous pouvez payez ce solde en méme temps que la présente facture soit un
folalde(266.70% + 8700%).

avant la date déchéance du 29) .
autornatiquement réparti survos & prochaines mensualit
par mois.

, 4 raison de

Aucours de la prochaine année, cormmangant |2 0900794 | nous prévoyons
gue ¥ous consommerez 19 875KWh |, cela représente un colt de
incluant 157.57 $de taxe(s).

A partirdu 07 110494, pour douze mois, votre versement de base serade ...
Si vous n'acquitez pas volre solde dd, votre versement total des six
prochains mois sera de

Pour de plus amples renseignements, nhésitez pas 4 communiquer avec le
bureau des senices A la clientelle au {514y 430-6110

Fig. 2. Access to the letter sent to the client.

131253 §
104583 $

266.70

37370 %

444594

1286.76%

107.00 %

15145 §

MV E
Révision annuelle
Principes

omment?

Modalité de paiement
du solde

Prochain versement

Letter

The first and simplest mean of support consists in providing access to the most recent
letter sent to the client by the company where the numbers are highlighted (Figure 2).

This is in general what the client has in hand when he calls the
Representative). It gives the CSR a common point of reference i
the client.

Hyperlink

Le 8septembre 1994

Objet © Mode de versements égaux- révision annuelle
Madame, Mansieur, |IRENE PELLETIER

Mous révisons actuellement le dossier de tous nos clients inscrits au mode de
versements €gau. Nous voulons nous assurer que vos mensualités refletent
le plus exactement possible 1a quantité d'électricité réellement consommeée.

Four la période e terminantle 06 /00704 | qui comprend 12 mois, |2 codt de

VOB [rmnsmssanting challa didlnstinitd otélaie & anancn s

de sep

Le Wersement de Base est calculé en divisant les Calts Prévus

L ; : A N
gy par 12 mois et en arrondissant le résultat au dollar prés.

Vous p
total de
awvant Arrondit [Colts Prévus / 12moig) = Versementde base
automs

parmo 128676% / 12 = 107.00 & ‘—\
Aucou = =

que val
incluar

CSR (Client Support
n the exchanges with

Le client veut de
I'information au sujet de

Codts réels

Modalité de paiement
du solde

Prevision

Apar‘lirdu 07110794, pour douze mois, voire verserment de base sera de . 107.00 §
Si wous n'acquitez pas wvotre solde dd, volre wversement total des =ix
Prochaing mois Sera e 15145 %

Pour de plus amples renselgnements, ihésitez pas & communiguer avec 1e
bureau des services 4 la clientelle au (514) 430-6110

La consommation réelle de l'année (20 120 KWh R)
Le solde a la derniére révision annuelle

Les frais administratifs encourus cette année

Les entrées diverses affectées au compte

Sous-total

Un solde reporté

Codt Total

Composition du colit de votre consommation réelle d'électricité

0.00 §

0.05%

1310,75 §
183 %
0.00 §

131258 §

131253 §

Fig. 3. Two examples of hypertext-like expansions of amounts that
how they are derived.

provide explanation on

The second means consists in making expandable each of the highlighted number
in that letter, akin to hyperlinks (Figure 3). As most questions refer to these numbers,

that mechanism allows easy, access to the details of how each amount on the letter is
derived. The user clicks on a number and a window shows how this number is
derived. The numbers in the explanation window can be further explored this way.

Diagnostic and documentation

Another feature of the interface is its ability to facilitate access to the relevant
information by inferring the most likely causes of a CSR call. It allows direct access
to the part of the system that is needed to answer the client’s question. For example,
Figure 4 shows the three most likely causes of a CSR call based on a statistical
analysis of the client’s profile. If the reason for the call is, say, the first item shown (a
26% increase of annual electricity consumption), the plausible causes are reminded to
the CSR and can be discussed with the client. When applicable, all numbers shown
are computed to reflect the actual impact in dollars for that particular client to make
the information more relevant.

Aprés analyse du dossier, I'sssistant suggére les points suivants comme

propos d'appel possible. Utilisez les boutons pour atieindre les écrans
nécessaires pour traiter ces propos.

1- Augmentation de consommation annuelle de 26% Diagnostiquer
2- Solde de révision annuelle de 26653 § Expliquer I
3- Solde reportd de 0.05 § Expliquer |

Fig. 4. Inference of the three most likely causes of a CSR call (left) and a corresponding
explanation of cause 1 (right). Each tabbed text display in the explanation windows highlights,
for that particular customer, the amount that corresponds to the different causes.

$/an Apparells
-804-200 Poéle & conbustion lante
108100 Peithes portatives
S0 4150 Climstmseur
150430 Piscine
S0 &250 Thenmopormipe
04280 Chaufle-eau de piscane
4150 Congiateur
104 50 Lavevaissslle

| Ajout dun appareil

Evaluation Results

The impact of introducing the EPSS to the original THEO interface were investigated
in an informal experiment (see [1] for details). The results of this experiment show
that two out of three users with no training at all were able to perform the standard 15
out of 15 tasks relating to the topic chosen for the experiment (the equal payment plan
that normally requires three weeks training). The other subject was able to perform 10
out of the 15 task. In comparison with the original interface without the EPSS, only
one of the tasks was succeeded by a person without training. However, the trained
CSR representatives were able to do almost all of them, as expected.

These results form a compelling argument for the effectiveness of the EPSS
enhanced user interface. Considering that two out of three subjects were able to
complete all of the 15 CSR tasks without training, it is quite reasonable to consider
that the original three weeks training could be substantially reduced given the EPSS.

A qualitative questionnaire was also administered to investigate non performance
related factors. Results from this questionnaire were very positive. All subjects,
whether novices or experts, had positive comments on the EPSS. They all considered
this tool to be useful, especially for novices. The number inspection technique was
preferred over the hierarchical decomposition. It was unanimously considered “very
useful” by all five of the subjects who filled out the questionnaire, whereas the

hierarchical decomposition technique was considered by two subjects as “very useful”
and by the three others as “rather useful”.

The authors concluded from this investigation that an EPSS like THEO can
substantially reduce the training period, and even improve the quality of the CSR
service in general. The investigation clearly showed the power of rethinking the user
interface to extend its purpose beyond the sole goal of providing the functionality, to
the goal that encompasses the training and the learning of the most complex tasks to
perform with the system.

3.2 Interactive Development Environment examples

The power of embedding, within the user interface, means to help the user learn
complex tasks has now been recognized within some communities. One of the most
notable example is in the computer programming community where IDE (Interactive
Development Environment) have evolved into highly sophisticated interfaces to
support computer program development. These environments allow the programmer
to have access to a large array of contextual tips, documentation, and other interface
features that help them not only in doing the task more efficiently, but also to better
learn the programming language and more advanced programming techniques.

There are many examples that could be mentioned here, and we name but just a
few for brevity.

Project template skeletons and examples

The typical software project development types (GUI, library, etc.) are provided as
template code that is complete with default structure and configuration, relieving the
programmer from the initial effort of finding sample code to start from, and providing
a useful example for the novice programmer.

Syntax
When typing, all syntactically incorrect lines are highlighted and, when possible, the
correction is suggested.

Auto-completion

A powerful feature is the ability of the IDE to analyse the code and display a list of
possible completions to the expressions as the user is typing them, such as the list of
all methods that can be called upon a given object. Not only does this feature relieve
the load on the user’s memory, it also allows him to explore and learn the possibilities
of the library.

Source code

All of Java’s source code base is available by clicking over the corresponding
function call in the user’s program. Exploring the inner architecture of Java’s source
code helps the programmer understand the framework and learn advance
programming tips and patterns.

The result of these features is twofold :

1. the user has fewer things to know, and thus fewer things to learn;
2. the learning occurs naturally as the user performs the tasks.

The case of auto-completion is a clear example of how this result can occur (Figure
5). It is taken from the NetBeans IDE2. The two popup windows of the NetBeans
interface screendump show the auto-completion feature in action (refer to the two
popup windows pointed to by the “completion and documentation” bubble text in
Figure 5). The user is typing the name of the “System” class and the top window
shows the applicable methods for that class, whereas the bottom window shows some
details about the highlighted choice.

In this example, the cognitive load of remembering the name of the methods is
reduced to a task of recognition and, in the case where the method is actually
unknown, it provides immediate documentation to find and learn the method that
should be used for the intended goal.

E NetBeans IDE 5.5.1 - JavaApplication7 =X
File Edit Wiew MNavigate 3ource Refactor Build Run CVWS Tools Window Help
= & - s —
DEEB B AN L] A& DD D posmow
][] | Fites Runtime " va |” Welcome x| [@™ NewClass java* x| [NewMaln java * x‘ [4]4][=]
o & CompteurMVC - = = o = —
£ e S L S S 2 I $5 PE [E—
o & CompteurMyC s " A F m b e 9 == 0 a =
¢ & JavaApplication? * NewMain.java ~lm
9 @@ Source Packages - B N i Template
o @ <default packag| _ * Created on 20 mai 2008, 14:09) skeleton
B N 3
r !%\‘“,,NEW:‘E_SS_‘H * To change this template, choose Tools | Template Manager
o e Newbiain jav * and open the template in the editor.
o [javaapplication? */
o~ [Test Packages System™
o @ Ubraries) =P \';J System.err.printind|"); serr
= " (=) System.out.printing|"); sout
o~ [@ Test Libraries x)
18 Testubran s i * @author michel =0 SYSTEM_EXCEPTION {org.omg.Portablelnterceptar
— L7 8 System (javalang
Mavigator - main [l [3¢] public class NewMain { B SystemColor (ava.awt)
{45 SystemException (org.on
Members View - o Fraeiae A o iy
| =] ik Creates a new ns| g, systemFlavorMap (java aw
fJ NeWam‘Q lf public NewMain() { o= SystemHandlerDelegate (C nternal.ws.spi.runtime;
& main(String] args) } & SystemHandlerDelegateFactory (com sun xm|inter
i ffp SystemIDResolver {com s
T * @paran aras the cof &3 SystemIDResolver (con mlinternal.utils)
/ h i SystemldResolver (com.s al fastinfoset.sax)
Syntax ’ i
0 = public static void mai i SystemTray (ave o
/ TODO code app]{ =0 SystemTrayPeer fava s peer =
Ji | systenl]
¥ ‘ . Completion and
Filters: ﬁ\li@ 351 36 THS System.err.printinC”|"); er documentation
: . [not a statement
Usages 21 Abbreviation: serr [SPACE for expansion]
Q, Findin Projects ' expected
(@ D

Fig. 5. Some features of the NetBeans IDE interface such as Auto-completion as when the user
is typing the name of the class “System”, syntax correction, and code template skeleton.

2 See http://www.netbeans.org/. The same could be said of most popular IDEs such as
Microsoft’s .NET, Borland’s Turbo series, or IBM’s Eclipse

All the other features mentioned above serve the same purposes of reducing the
amount of learning, providing examples, highlighting errors at the very moment the
user makes any and of providing highly precise and context sensitive documentation
to learn to do a task.

4 Interface Design, Learning, and Performance

The observations from the THEO and NetBeans interfaces bring us to a larger
understanding of the interactions between interface design, learning, and
performance. These interactions are illustrated in Figure 6.

The learning curve of Figure 6(a) is typical of the evolution of performance. It
follows the well known Power law of practice [2]. As the user gets familiar with the
tasks and the application, he develops strategies to perform better. The performance
increases from an initially low level to an expert level and then levels off. However,
this curve is not necessarily the best that can be achieved. Often, interface designers
settle for a design that allows the user to perform at an acceptable level quickly, but
that design may not be optimal for expert users. Moreover, expert users tend to stop
their learning process too early because they lack the incentive to make the effort of
consulting the necessary documentation, or the time to explore new and complex
functionality that could him to new levels of performance.

—— Ideal
—— Actual ——— Actual
Perfarmance Performance

Patential

/ Adaplability
Expirt Expert
—
/ Max atiained / Max ataned
Acceplable //

Initial Intial / L ul Design EFSS
Time Time
(a) The learning curve (b) Support Means

Fig. 6. The learning curve and interface design issues.

Figure 6(b) depicts the “Ideal” curve. Long term performance reaches a greater
level of performance and the initial performance also starts off at a higher level. This
goal is difficult to reach because there often is a tradeoff between initial performance
and the potential performance that can be reached with an interface. Some interfaces
can have a steep learning curve but, once the user has gotten over the initial effort of
mastery, the performance can be much greater than with a simpler interface to start
with. On the contrary, interfaces that are very easy to use for novice users often do not
meet the needs of high performance for expert users.

Three means can be deployed to avoid this tradeoff between initial ease of use and
the optimal performance for experts, and, thus, to transform the “actual” performance
curve into the “ideal” one:

Ul Design

The first one is the best known and consists in good User Interface (Ul) design.
Proponents of the user-centred approach to developing interactive software know that
a good Ul design can make a substantial difference in the user productivity. Studies
have shown that a gain of 35% in productivity is what can be expected [3] by properly
applying a user-centred approach to Ul design. One of the key element of the design
here is to support the diversity of users, namely experts as well as novices.

EPSS

The second means consists in using Electronic Performance Support Systems (EPSS).
This is what is depicted in the THEO and NetBeans examples. As argued above, it
enriches the user environment with embedded mechanisms to foster learning in a just-
intime, context sensitive and on-demand fashion. The user can learn to gradually
perform more complex tasks, more efficiently, in a naturally occurring manner that is
akin to how most of our learning is acquired.

Adaptability

Finally, the third mean refers to the ability of an interface to adapt to its user. For the
purpose of training and learning, one of the most important adaptation is the ability to
adapt the interface help, documentation, and guidance to what the user knows and his
level of skills for a given task. Another is the ability to infer what is the current user’s
goal. The auto-completion is such an adaptation feature. This feature is the most
difficult to implement and the advances in the field are slow, in spite of substantial
research efforts in the field during the last two decades®. However, in the long term, it
should yield significant returns.

5 Conclusion

Our daily environment is becoming more computerized than ever before. We argue
that we need to think of the user interface of our computerized environment not only
as a tool to perform tasks, but as a tool to help increase our skills and learn through
that very interface. We have outlined different means of doing so and shown that they
can prove very effective towards that goal.

At a time where the constructivist approach is paramount and where learning by
doing is perceived as a key element for most programs in schools, the potential of
reaping the benefits of enriching our computerized environments with learning
facilitators is great. The opportunity for teachers to leverage on such learner centered
environments is something to consider.

3 See, for example, the User Modeling and User Adaptive Interfaces Journal.

References

1. Desmarais, M.C., Leclair, R., Fiset, J.Y., Talbi, H.: Cost-justifying electronic
performance support systems. Communications of the ACM 40(7) (July 1997) 39-48

2. Newell, A., P., R.: Mechanisms of skill acquisition and the law of practice. In Anderson,
J.R., ed.: Cognitive Skills and their acquisition. Hillsdale N.J: Erlbaum Associates
(1981) 1-55

3. Landauer, T.K.: The Trouble with Computers. MIT Press (1995)

