
Designing Programming Exercises with Computer
Assisted Instruction*

Fu Lee Wang1, and Tak-Lam Wong2

1 Department of Computer Science, City University of Hong Kong,
Kowloon Tong, Hong Kong

flwang@cityu.edu.hk
2 Department of Computer Science and Engineering,

The Chinese University of Hong Kong,
Shatin, Hong Kong

wongtl@cse.cuhk.edu.hk

Abstract. Teaching of computer programming has created significant
difficulties to both teachers and students. Large class size is one of the major
barriers to effective instruction. A well-designed pedagogy can make the
instruction most effective. This paper will share our experiences of teaching
programming courses with large class size. A set of programming exercises
have been designed with help of computer assisted instruction. Evaluation has
showed that the new pedagogy provide great flexibilities to both teaching and
learning of computer programming. The students’ academic results have been
significantly improved in programming courses.

Keywords: Computer programming, large class size, stepwise learning,
teaching and learning, computer assisted learning (CAI).

1 Introduction

Learning computer programming has been known to be difficult for many beginners
(Boulay, 1989). A number of challenges have been identified for both teaching and
learning programming (Sleeman, 1986). A programming course typically has a large
class size. Large class size is one of the major barriers to effective instruction. It is
difficult to closely monitor individual student’s learning progress. The teachers do
not have enough time to interact with all students in a class of hundreds of students
within a few hours of lectures and tutorials each week. Teaching and learning
computer programming has created significant difficulties to both teacher and
students.

It has been showed that computer-assisted instruction (CAI) technology can be a
more effective way of teaching introductory programming courses (Anderson &

* The work described in this paper was substantially supported by a grant from City University

of Hong Kong (Project No.: 6000144).

Skwarecki, 1986). This paper will share our experience in using CAI technology to
teach computer programming with large class size.

Students taking computer programming courses very often come with various
backgrounds and ability levels. We have incorporated several teaching strategies in
designing our teaching and learning activities for computer programming courses.
We have designed programming exercises with different levels of difficulty to fulfil
the need of students with various backgrounds and ability levels. We can ensure that
each step is learned by stepwise learning (Schulman, 2001). The CAI technology
allows us to have a close monitoring of students’ learning progress. Moreover, we
have designed programming activities in an incremental manner, so that the students
gain the knowledge of large application development by implicit learning (Berry,
1997). This experience prepares the students ready to participation in a software
development team.

The CAI technology provides great flexibilities for us to render the teaching and
learning of computer programming more effectively. The students’ academic results
have been significantly improved. Students find the learning computer programming
become interesting, and their programming skills are enhanced subsequently.

The rest of this paper is organized as follow. Section 2 gives an overview of
computer-assisted instruction systems for computer programming. Section 3
describes the development of programming activities with multiple levels of
difficulties. Section 4 presents incremental style of programming activities. Section
5 evaluates the new pedagogy. We conclude our work in Section 6.

2 Computer-Assisted Instruction for Computer Programming

Related research has showed that computer-assisted instruction (CAI) technology can
be a more effective way of teaching introductory programming courses - for certain
populations (Anderson & Skwarecki, 1986). Programming skill has to be acquired
through lots of practice (Cheang, Kurnia, Lim & Oon, 2003). With the support of
CAI, we are able to provide adequate practices to students.

Instant support to the students is a critical factor to the success of teaching and
learning of computer programming. However, it introduces a huge pressure in the
resources, and it may not be affordable by some universities. It has been showed that
intelligent computer-assisted instruction technology can be a more effective way of
teaching introductory computer programming courses (Anderson & Skwarecki,
1986). We have implemented a computer-assisted instruction system to support our
teaching of computer programming courses. The detail functionalities, design and
implementation can be found in (Choy, Nazir, Poon & Yu, 2005; Yu, Poon & Choy,
2006). Figure 1 shows the Programming Assignment aSsessment System (PASS).
The PASS system is a web-based computer-assisted instruction system for computer
programming (Choy, Nazir, Poon & Yu, 2005; Yu, Poon & Choy, 2006). The PASS
system is a fully automated system to help students to study programming.

The PASS system allows the teachers to setup some programming problems. The
teachers provide the input and the corresponding output to each test case. The
students then submit their program for testing. The system automatically complies

and executes the program submitted. By comparing the outputs generated by the
students’ program and the expected output provided by the teachers, the system will
then provide feedbacks to the students. For example, if a student gets wrong in a
certain type of inputs, the system will show the attached annotation provided by the
teachers to give some hints of possible mistakes to the student. The instant feedback
provided by the system provides concrete assistances to students to revise their
programs, and debugging will become more interesting.

Fig. 1. Programming Assignment aSsessment System (PASS)

A number of computer-assisted programming learning systems have been
developed. The PASS system has a lot of advantages over the existing systems (Choy

et. al., 2007). The program submitted will be tested automatically against a large
number of test cases. The system will test whether the program is correct with respect
to the selected test cases. When the submitted program is incorrect, PASS will
indicate to the student exactly at which position the actual output differs from the
correct output. Some teacher may store some predefined comments with some
specific patterns of mistakes in the system. The system will show the comment to the
student to help the student to debug. This kind of prompt feedback to students was
rarely possible before PASS was developed (Choy et. al., 2005).

The PASS system has been used in programming courses since 2004, and it has
been evolved to its third version. The system currently support teaching and learning
of a number of programming languages, including C, C++, Java and Pascal. The
system is highly evaluated by both students and teachers. PASS allows a tailor-made
learning pace and style for individual student. It has provided a quick and convenient
channel for students to test their work without manual involvement. Instant feedback
to students encourages them to enhance their programming skills. The introduction of
PASS has made the learning of computer programming more rewarding than before.

In the following sections, we will discuss how teaching strategies are incorporated
with the intelligent computer-assisted instruction system.

3 Programming Activity with Multiple Levels of Difficulties

Effective instruction involves working the content to provide stepwise learning which
checks along the way to assure that each step is learned (Schulman, 2001). It is
important to ensure that students are well-trained in the fundamentals to the extent
that they can eventually consider some problems with high-level complexity. We pay
extra care to design the teaching and learning activities to incorporate stepwise
learning.

Students taking computer programming courses very often come with various
backgrounds and ability levels. The PASS system allows us to design exercises with
different levels of difficulty to fulfil the need of students with various backgrounds
and ability levels.

To illustrate the idea, we take the programming exercise of solving a quadratic
equation as a running example (Figure 2). We have created a number of test cases,
which are grouped into three levels of difficulty, namely, the beginner level,
intermediate level and advanced level (Figure 3). The equations which have two
distinct real roots are considered relatively easier; and therefore we classify the
corresponding test cases as at the beginner level (Figure 3a). The test cases which
correspond to quadratic equations with one repeated root or two complex roots are
classified as at the intermediate level (Figure 3b). The exceptional cases (such as
those corresponding to the cases when the equations become linear or identities) are
classified as at the advanced level (Figure 3c).

Fig. 2. Programming Exercise of “Quadratic Equation”

Fig. 3. Test cases of quadratic equation programming exercise at different levels of difficulty

The PASS system allows us to tell the students the level of difficulty of each
exercise (Figure 4). For the same problem, students can attempt the exercises based
on their capability. For example, the less talented students may design a simple
program to solve the problem at the beginner level of difficulty (Figure 5a). If they
submit their programs to attempt exercises at other levels of difficulty, they will fail in
those test cases (Figure 5b). Instead, they must enhance their programs in order to
solve the problem at the intermediate level of difficulty.

A Programming Exercise of Solving a Quadratic Equation

Write a program to solve a quadratic equation. The general form of a quadratic equation
is ax2 + bx + c = 0, where a, b, c are real numbers. When a ≠ 0, the solution of the

equation is given by the quadratic formula
a

acbbx
2

42 −±−
= .

In this exercise, the user need to input the value of a, b and c, then the program will output
the answers accordingly. We assume that all the inputs are integers, and that the outputs
are to be displayed in ascending order with 2 decimal point precision.

Test Cases of Quadratic Equation Programming Exercise

(a) Test Cases at the Beginner Level of Difficulty

Input Expected Output
a = 1, b = –5, c = 6 x = 3, 2
a = 2, b = –7, c = –15 x = 5, –1.5
a = 1, b = 6, c = 8 x = –2, –4

(b) Test Cases at the Intermediate Level of Difficulty

Input Expected Output
a = 1, b = –2, c = 1 x = 1
a = 1, b = 2, c = 5 x = –1+2i, –1–2i
a = 2, b = 12, c = 18 x = –3

(c) Test Cases at the Advanced Level of Difficulty

Input Expected Output
a = 0, b = 2, c = 4 x = –2
a = 0, b = 0, c = 0 x = any real numbers
a = 0, b = 0, c = –4 No solution

Fig. 4. Programming exercises at different levels of difficulty.

(a) A Sample Run of Submission to an Exercise at the Beginner Level of Difficulty

(b) A Sample Run of Submission to an Exercise at the Intermediate Level of Difficulty

Fig. 5. Exercises at different levels of difficulty and sample runs of submissions in PASS.

However, the talented students may work directly to solve the problem at the
intermediate level of difficulty. They can even try to challenge the exceptional test
cases by submitting their programs to solve the problem at the advanced level of
difficulty. Eventually, they should come up with a single program which can solve
the problem up to a certain level of difficulty. This approach allows the students to
regulate their own learning pace. Additionally, we may require students to study the
given test cases for each exercise to figure out how we select the test cases so as to

learn how to test their programs on their own.

4 Incremental Style of Programming Activity

Traditional programming courses focus on the development of small applications.
Without the support of related technology, students usually develop small applications
by writing the code solely on their individual effort. The student may become an
analyst programmer in the future and may be involved in some large scale projects.
Students often find it difficult to manage large software development jobs when they
work in the industry. It is very important to provide students with experiences of
software development in large scale applications while they are studying.

However, there are practical difficulties to require students to develop a large
application. First of all, students’ learning motivation drops very fast as the time they
have to spend on study increases. If we require the students to code a large
application, they are usually unable to see their results before the completion of the
whole application. They will lose their interests in programming soon after they
started. Lack of motivation is one of the major resistances to learning (Atherton,
1999). As we foresee the need, we consider large application development as an
essential part of an advanced programming course. Some special arrangements have
to be made to keep the students’ learning motivation.

When we design a large application, we may divide the application into several
modules. After the student has completed one module of the application, he/she can
submit the modules to PASS. Some stubs or test drivers can be provided for testing
their individual modules. It is important to reinforce the student’s success upon
his/her completion of one module. This approach also increases the student’s
confidence in learning. The intermediate results can keep students’ learning
motivation constantly high. The students will develop the application in a progressive
manner. After the students have completed the entire application, they can submit it
to PASS, which will test all the modules together as a single integrated application.

This approach highlights the modularity of computer programs. The students are
exposed to programs that are built from modules so that they learn the concept of
modularity of program by implicit learning (Berry, 1997). When developing an
application, students will have to divide their solutions into modules as functions and
classes.

Moreover, we require the students to archive all the files developed in their
activities. When designing a programming activity, we intentionally require the
students to make use of some modules developed in previous activities. For example,
we may require students to develop a program to solve a quadratic inequality (Figure
6) based on the module developed earlier in the programming exercise of solving a
quadratic equation (Figure 3).

Similarly, as before, we create exercises at different levels of difficulty (Figure 7).
The least talented students can solve the inequality by using their simple programs
that solve a quadratic equation, while the talented students can try some challenging
test cases such as when the quadratic inequality has one solution or no solution. In
this way, students will naturally acquire the concept of code reuse through their own

experience of reusing the previously developed code, as concrete experience is
important in the learning cycle (Kolb, 1984).

On the other hand, we sometimes ask students to exchange files and develop their
applications based on modules written by other students. This gives students some
experiences how to collaborate with other students. It prepares the students to work
as a team member in a large project development team in the future. Moreover, the
students need to ensure that their program depends fully on the program interface, so
that their programs can work properly with the modules developed with other students.

Fig. 6. A programming exercise based on a previously completed module.

Fig. 7. Programming exercises of “Quadratic Inequality”.

5 Evaluation of the New Pedagogy

The new pedagogy is first developed for teaching computer programming courses in
2006. There are a number of differences between the new pedagogy with the old one.
The most major change is the design of the programming exercises. The current

A Programming Exercise of Solving a Quadratic Inequality

Write a program to solve a quadratic inequality based on the module you developed

earlier in the programming exercise of solving a quadratic equation. In general, a quadratic
inequality can be written in one of the following standard forms, where a, b, c are real
numbers:

ax2 + bx + c ≥ 0
ax2 + bx + c > 0
ax2 + bx + c ≤ 0
ax2 + bx + c < 0

Suppose that the equation ax2 + bx + c = 0 has two real roots x1 and x2 , where x1 < x2 .
If a > 0 , the solution sets of the inequalities are, respectively, as follows.

Inequality: ax2 + bx + c ≥ 0 . Solution: (–∞, x1] ∪ [x2 , +∞)
Inequality: ax2 + bx + c > 0 . Solution: (–∞, x1) ∪ (x2 , +∞)
Inequality: ax2 + bx + c ≤ 0 . Solution: [x1 , x2]
Inequality: ax2 + bx + c < 0 . Solution: (x1 , x2)

programming activities are designed in incremental manner with multiple levels of
difficulty. However, the exercises in the old design are disjoint from each other, and
there is only one level in terms of difficulty.

The PASS system is currently used during tutorial class. The teacher assigns some
programming exercises to the students. The student selects the difficult level of the
exercises to attempt according to their capability. Moreover, some less talent students
are unable to complete the tutorial exercises during tutorial session. These students
can return home to continue their works. The system will be able to provide
assistance to them even after school. As the system stores some patterns of common
mistake, the system will give some pre-stored hints to the students if any of the
patterns is identified.

The students taking programming courses are assessed by coursework and final
examinations. The coursework is usually in the format of programming assignments,
and the final examination is in the format of written examinations. We have
compared the results of the students before and after the implementation of new
pedagogy.

We have selected a typical programming course at the introductory level (Table 1).
Because the class size of this course is very large, the statistical information of this
course is worthy trusted. On the other hand, the materials of assessment are
moderated by peer review to ensure the standard of assessment. No scaling of score
has been conducted in this course. The score boundary for each grade has been fixed
by the department. As a result, this graded distribution of students is a very important
indicator to show the performances of teaching and learning.

Table 1. Statistics of a Computer Programming Course

 Year 2004 Year 2005 Year 2006

Total no. of students 277 253 251

Grade Score Boundary % of Students % of Students % of Students

A 69.5 7.94% 7.11% 26.00%

B 54.5 16.25% 17.79% 22.40%

C 39.5 35.38% 23.72% 23.60%

D 34.5 9.75% 12.65% 4.80%

F below 34.5 30.69% 38.74% 23.20%

In years 2004 and 2005, only a small percentage of students got grade “A”, while a

large percentage of students failed the course in these two years (Table 1). After the
new pedagogy was implemented in year 2006, the percentage of grade “A” students
increased dramatically from 7~8% to 26% (Table 1). At the same time, the
percentage of failure decreased significantly. As shown in the table, the students’
performances in the programming course increase significantly. This is a strong
evidence to show the success of the new pedagogy.

A focus group session has been held with students who enrolled in computer
programming courses. A set of interview questions are designed by professionals in

education development. The students are interviewed by an independent interviewer
and none of the course lecturers were presented. All the students in the focus group
believe that the new pedagogy can help them to learn programming courses more
effectively. Few responses are extracted as examples:

Student 1: The programming assignment with different levels is a fresh

idea. I can control my learning pace.
Student 2: My fellow classmates teach me a lot. They know clearly of

my problem.
Student 3: Eventually, I can develop a computer game by myself.
 …

The preliminary results of interview show a positive feedback from the students.

In order to get a more quantitative measurement for the course structure of
programming courses, we have conducted a survey by questionnaires. The
questionnaires are designed by professionals in education development in the similar
way as (Harding, Kaczynski, & Wood, 2005). The students are asked to score each
dimension of the course structure on the scale from 0 to 10, where a score of 10
represents the highest satisfaction, while 0 represents the least satisfaction. 50
students have participated in the survey. The results are summarized as Table 2.

Table 2. Evaluation of Course Design for a Computer Programming Course

Questions Average
Score

The PASS system is useful to my study of computer programming. 7.8
The PASS system helps me to have comprehensive testing of program. 8.2
I like the programming activity with different levels of difficulty. 8.1
I like the programming activity with incremental style. 7.3
The peer learning scheme is useful to my study. 7.8
The course design helps me to control my learning pace. 6.8
The course helps me to identify weakness. 7.5
The course encourages collaborations between students. 7.6
The course is effective in learning computer programming. 7.4

In Table 2, we can clearly see that the students are highly satisfied with the course

structure. The students are happy with the flexibilities provided by the new
pedagogy. They help the students to identify their weakness and control their own
learning paces. Therefore, the students can learn computer programming effectively.
Summing the above up, the new pedagogy is a good teaching and learning model for
computer programming.

6 Conclusion

This paper has shared our experiences in design of teaching and learning activities for
computer programming with large class size. By designing exercises at different
levels of difficulty, we provide stepwise learning experiences to students, such that
they can solve problems pertaining to their corresponding ability levels. Teachers can
also define problems in various ways in PASS so as to make students familiar with
modules programming and be prepared for large projects. The interviews have shown
that new pedagogy is very effective in teaching and learning computer programming.
The students’ performances in the assessments have further confirmed our findings.

References

1. Anderson, J. R., & Skwarecki, E. (1986). The automated tutoring of introductory computer
programming. Communications of the ACM, 29(9):842-849.

2. J.S. Atherton (1999). Resistance to learning: A discussion based on participants in in-
service professional training programmes. Journal of Vocational Education and Training
51(1):77-90.

3. D.C. Berry (ed.) (1997). How Implicit is Implicit Learning. Oxford University Press.
4. B. du Boulay (1989), “Some difficulties of learning to program”. In E. Soloway and J.C.

Spohrer (eds.), Studying the novice programmer. Hillsdale, N.J.: L. Erlbaum Associates.
5. B. Cheang, A. Kurnia, A. Lim, A., and W.-C. Oon (2003), “On automated grading of

programming assignments in an academic institution”. Computers & Education
41(2):121-131.

6. M. Choy, U. Nazir, C.K. Poon and Y.T. Yu (2005), “Experiences in using an automated
system for improving students’ learning of computer programming”. In Proceedings of
the 4th International Conference on Web-based Learning (ICWL 2005). Lecture Notes in
Computer Science (LNCS no. 3583), Springer, pp. 267-272.

7. M. Choy, S. Lam, C. K. Poon, F. L Wang, Y. T. Yu and Leo Yuen (2007), “Design and
Implementation of an Automated System for Assessment of Computer Programming
Assignment”. In Proceedings of the 6th International Conference on Web-based Learning
(ICWL 2007). Lecture Notes in Computer Science (LNCS no. 4823), Springer, pp. 584-
596.

8. Harding, A., Kaczynski, D. & Wood, L.N., (2005), Evaluation of blended
learning: analysis of qualitative data, Proceedings of the Symposium of Blended
Learning in Science Teaching & Learning, pp. 56-62, The University of Sydney,
Australia, 28th-30th September 2005.

9. D.A. Kolb (1984). Experiential Learning: Experience as the Source of Learning and
Development. New Jersey: Prentice-Hall.

10. M. Schulman (2001), “Basic understandings for developing learning media for the
classroom and beyond”. Learning Technology Newsletter 3(1).

11. Sleeman, D., (1986), The Challenges of teaching computer programming.
Communication of the ACM, 29(9):840-841.

12. Y.T. Yu, C.K. Poon and M. Choy (2006), “Experiences with PASS: Developing and using
a programming assignment assessment system”. In Proceedings of the 6th International
Conference on Quality Software (QSIC 2006), IEEE Computer Society Press, pp. 360-365.

